
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

W911NF-10-1-0005

615-322-2926

Ph.D. Dissertation

56919-NS-DPS.40

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

The rapid advancement in digital technology over the past few decades has fueled the progress in computation and
communication technologies. Enabled by this progress, complex engineered systems commonly referred to as
Cyber-Physical Systems (CPS), resulting from the integration of computing, communications and control, and in
direct interaction with the physical world, are becoming ubiquitous in our daily lives. Examples of these systems
include process control, automotive systems, networked robotics, medical systems, electrical power grids and
environmental monitoring systems among others. These real world CPS are increasingly being monitored and

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

26-03-2014

Approved for public release; distribution is unlimited.

Model-based compositional design of networked control systems

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

Passivity-based compositional design, Networked control systems

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Yuan Xue

Eyisi, Emeka P.

106011

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Vanderbilt University
PMB # 407749
2301 Vanderbilt Place
Nashville, TN 37240 -7749

2

ABSTRACT

Model-based compositional design of networked control systems

Report Title

The rapid advancement in digital technology over the past few decades has fueled the progress in computation and
communication technologies. Enabled by this progress, complex engineered systems commonly referred to as Cyber-
Physical Systems (CPS), resulting from the integration of computing, communications and control, and in direct
interaction with the physical world, are becoming ubiquitous in our daily lives. Examples of these systems include
process control, automotive systems, networked robotics, medical systems, electrical power grids and environmental
monitoring systems among others. These real world CPS are increasingly being monitored and controlled by
networked control systems (NCS) and are often employed in critical settings, therefore the assurance of properties
such as stability, performance, safety and security are essential. As a result, the analysis and design of NCS
architectures have recently gained increasing attention. This dissertation addresses several fundamental challenges in
the modeling, design, analysis and evaluation of dependable networked control systems.

First, a domain specific modeling language (DSML), Passive Networked Control Systems (PaNeCS), is presented.
PaNeCS raises the level of abstraction of NCS design and allows automated analysis, code generation, system
configuration, deployment, and testing. PaNeCS is based on passivity and ensures the “correct-by-construction”
design of NCS by enforcing passivity constraints on the components of the NCS as well as their interconnections.
Simulation and experimental models generated from the tool are presented to demonstrate the robustness of NCS
designs using the tool. Second, an integrated passivity-based adaptive sampling control (PBASC) architecture is
presented. PBASC architecture addresses the challenges due to the limited network resources as well as the presence
of network uncertainties. The underlying idea of PBASC architecture is to simultaneously allow the variability of
sampling intervals as well as ensure stability. Hence, in the proposed framework, while passivity ensures the
robustness of the NCS in the presence of uncertainties, adaptive sampling ensures the efficient utilization of network
resources. Third, an integrated modeling and simulation tool, Networked Control Systems WindTunnel (NCSWT),
based on High Level Architecture (HLA), is introduced. NCSWT integrates Matlab/Simulink and ns-2 for the
accurate and efficient evaluation of NCS. Finally, an energy-based attack detection (E-BAD) approach for network
control systems is presented. E-BAD is a contribution towards ensuring security of NCS. The underlying approach is
based on using the fundamental notion of a system’s energy balance in the detection of malicious attacks in NCS.
The impact of various attack models on NCS are characterized providing conditions for passive as well as non-
passive attacks. Simulation and experimental results are presented in order to evaluate the proposed detection
mechanism.

3

MODEL-BASED COMPOSITIONAL DESIGN OF NETWORKED CONTROL SYSTEMS

By

Emeka P. Eyisi

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

of the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

December, 2013

Nashville, Tennessee

Approved:

Professor Xenofon Koutsoukos

Dr. Shige Wang

Professor Gabor Karsai

Professor Yuan Xue

Professor Janos Sztipanovits

4

To my amazing wife, Nkiru and my sons Kosi and Kesi,

your abundant support, love and laughter kept me going through this entire journey.

“Onye kwe Chi ya ekwe, Ekene diri Chukwu.”

ii

5

ACKNOWLEDGMENTS

During my graduate school at Vanderbilt, I had the great pleasure of working with an amazing

group of talented people. Most especially, I would like to thank my adviser Professor Xenofon

Koutsoukos for his guidance and advise with this work, and for always trying to put the research

problem into perspective. I am grateful to Professor Yuan Xue, Professor Janos Sztipanovits and

Professor Gabor Karsai, who have always kept an open door policy, giving me the opportunity to

stop by at any time for a discussion. I would like to thank Dr. Shige Wang, who I can always rely

on for advice both on research related matters and personal life in general.

I will like to thank my fellow colleagues who have affected every aspect of my study at Vandy

both work related and outside work activities, in particular Heath LeBlanc, Zhenkai Zhang, Jia Bai,

Joe Porter, Ashraf Tantawy, Daniel L. C. Mack, Stephanie Weeden-Wright, Siyuan Dai, Chetan

Kulkarni, Peter Horvath, Mark Yampolskiy, Gabor Simko and members of the ModEs and VaNets

group.

I would also like to thank my parents, siblings and in-laws for their continuous encouragement.

Most importantly, I would love to thank my wife Nkiru, for her endless support, love and guid-

ance. And to my sons, Kosisochi and Kesiyonna, thanks you for always putting a smile on my

face no matter how bad my day might be going. Finally, this work would not have been possible

without the financial support of the National Science Foundation (CNS-1238959, CNS-1035655,

and CCF-0820088), US Army Research Office (ARO W911NF-10-1-0005), and Lockheed Martin.

iii

6

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

Chapter

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Research Challenges . 2
1.3 Overview and Contributions . 3

2. RELATED WORK . 8
2.1 Networked Control Systems . 8

2.1.1 Configurations of Networked Control Systems 8
2.1.1.1 Direct structure . 9
2.1.1.2 Hierarchical structure . 9

2.1.2 Classification of Networked Control Systems 10
2.1.2.1 Multi-agent Systems . 10
2.1.2.2 Control of Networks . 12
2.1.2.3 Control over Networks . 13

2.1.3 Teleoperation . 15
2.1.4 Passivity-based Design of NCS 17

2.2 Adaptive Sampling . 19
2.2.1 Event-Triggered and Self-Triggered Control 20
2.2.2 Network- and QoS-based Adaptive Sampling 21

2.3 Model-Based Design and Simulation of NCS 22
2.3.1 Introduction of Model-Based Design in Control Systems 23
2.3.2 Model-Based Design of Networked Control Systems 23
2.3.3 Simulation of Networked Control Systems 23

2.3.3.1 Monolithic Simulation Frameworks 24
2.3.3.2 Heterogenous Simulation Frameworks 25
2.3.3.3 High Level Architecture 26

2.3.4 Functional Mock-Up Interface(FMI) and Functional Mock-Up Unit(FMU) 29
2.4 Dependability of Networked Control Systems 30

2.4.1 Dependability . 31
2.4.2 Introduction to Fault-Tolerance 32

iv

7

2.4.3 Fault Tolerant Control . 34
2.4.3.1 Analytic Redundancy . 37
2.4.3.2 Simplex Architecture . 37

2.4.4 Model-based Detection . 34
2.4.4.1 Residual Generation . 40
2.4.4.2 Residual Evaluation . 41

2.4.5 Energy-based Detection . 41
2.4.6 Security of NCS . 42

2.5 Applications . 44
2.5.1 Robotic Systems . 45

2.5.1.1 Robotic Manipulators . 45
2.5.1.2 Wheeled Mobile Robots 46

2.5.2 Automotive Systems . 48
2.6 Comparison to this Dissertation . 50

3. BACKGROUND ON PASSIVITY AND DISSIPATIVITY 52

3.1 Dissipativity and Passivity . 52
3.2 Definitions of Passivity . 52

3.2.1 State-Space Approach . 53
3.2.1.1 Continuous-Time Case . 53
3.2.1.2 Discrete-Time Case . 54

3.2.2 Input-Output Operator-based Approach 55
3.2.2.1 Continuous-Time Case . 55
3.2.2.2 Discrete-Time Case . 57

3.3 Passivity Properties . 58
3.3.1 Stability . 58
3.3.2 Phase-related Properties . 59
3.3.3 Kalman-Yakubovich-Popov Property 60

3.4 Interconnection of Passive Systems . 64
3.4.1 Parallel Interconnection . 65
3.4.2 Feedback Interconnection . 65
3.4.3 Symmetric Input-Output Transformation 65

3.5 Passivity Indices and Passification . 66
3.5.1 Passivity Indices . 66

3.5.1.1 Input Feedforward Passivity Index 67
3.5.1.2 Output Feedback Passivity Index 68
3.5.1.3 Computing Passivity Indices for Linear Systems 69

3.5.2 Passification . 70
3.6 Wave Variable Transformation . 70

v

8

4. MODEL-BASED DESIGN OF PASSIVITY-BASED NCS 72

4.1 Introduction . 72
4.2 Passivity-Based Control of Networked Control Systems 73
4.3 Overview of PaNeCS . 75
4.4 Modeling in PaNeCS . 76

4.4.1 Components . 76
4.4.2 Aspects . 82
4.4.3 Structural Semantics . 83

4.5 Passivity Analysis . 83
4.5.1 Component Analysis . 84
4.5.2 System-Level Analysis . 84

4.6 Code Generation . 85
4.7 Simulation Results . 87
4.8 Experimental Results . 89
4.9 Summary . 98

5. PASSIVITY-BASED ADAPTIVE SAMPLING IN NCS 99

5.1 Introduction . 99
5.2 System Model and Problem Statement 100

5.2.1 System Model . 101
5.2.2 Problem Statement . 102

5.3 Integrated Passivity-based Adaptive Sampling Control Architecture 103
5.3.1 Adaptive Sampling Scheme . 103
5.3.2 Wave Variables . 106
5.3.3 Variable Passive Sampler and Variable Passive Hold 107
5.3.4 Networked Controller . 108

5.4 Analysis . 109
5.4.1 Passivity . 109
5.4.2 Tracking . 112

5.5 Simulation Results . 114
5.6 Experimental Results . 118
5.7 Summary . 124

6. INTEGRATED MODELING AND SIMULATION OF NCS 125

6.1 Introduction . 125
6.2 Overview of NCSWT . 128
6.3 Model-Based Design and Integration 129

6.3.1 Base HLA Meta-language . 130
6.3.2 NCSWT Model-Based Approach 131

6.3.2.1 NCSWT Model Integration Language 132
6.3.2.2 Control Design Modeling Language 136

vi

9

6.3.2.3 Network Design Modeling Language 138
6.3.3 NCSWT Model-Based Design Flow 140

6.4 NCSWT Run-Time Components . 142
6.4.1 Run-Time Infrastructure . 142

6.4.1.1 Time Management . 143
6.4.1.2 Data Communication and Coordination 143

6.4.2 Federates . 143
6.4.2.1 ND Federate . 144
6.4.2.2 CD Federate . 145

6.5 Implementation Overview . 146
6.6 Case Studies . 146

6.6.1 Networked Unmanned Aerial Vehicle 147
6.6.1.1 Nominal Case . 147
6.6.1.2 Scenario with a Lossy Network 148
6.6.1.3 Scenario with multi-hop relay for packet delivery 149

6.6.2 Industrial Networked Control System 150
6.6.2.1 Nominal Case . 151
6.6.2.2 Scenario with network effects 151

6.7 Evaluation . 152
6.8 Summary . 157

7. ENERGY-BASED ATTACK DETECTION IN NCS 158

7.1 Introduction . 158
7.2 System Model and Problem Statement 160

7.2.1 Networked Control System Model 161
7.2.2 Attack Model . 163
7.2.3 Problem Statement . 167

7.3 Energy-Based Attack Detection . 169
7.3.1 Discrete-Time Energy Balance Derivation for NCS 169
7.3.2 Main Results: Characterization of Energy in the Presence of Attacks . 173
7.3.3 Characterization of Attack Models 178
7.3.4 Total Energy in the case of Unmeasurable States 185

7.4 Simulation Results . 187
7.4.1 Simulation setup . 188
7.4.2 Scenarios . 189

7.5 Experimental Results . 194
7.5.1 Experimental setup . 194
7.5.2 Scenarios . 195

7.6 Summary . 200
8. CONCLUSIONS . 201

vii

10

LIST OF TABLES

Table Page
1. LTI Plant and Controller Dynamics . 89
2. PlantSystem Model Parameters . 92
3. Controller Model Parameters . 93
4. Acronyms . 128
5. Required Software Packages . 153
6. Generated Code for Networked UAV Case Study 156
7. Time Efficiency for Networked UAV Case Study 156
8. Time Efficiency for MANCS Case Study . 156
9. Attack Models and Compromised Components of NCS 163

viii

11

LIST OF FIGURES

Figure Page
1. Direct Structure of NCS . 9
2. Hierarchical Structure of NCS . 10
3. Classification of Fault-Tolerant Control . 35
4. Model-Based Detection Scheme . 39
5. Parallel Interconnection of Passive Systems . 65
6. Feedback Interconnection of Passive Systems . 66
7. Pre- and Post- Multiplication of a Passive System 66
8. Input Feedforward Passivity . 67
9. Output Feedback Passivity . 67
10. Wave Variable Transformation . 71
11. Networked Control Architecture . 74
12. PaNeCS Design Flow . 76
13. PlantSystem Sub-Language (Linear) . 77
14. PlantSystem Sub-Language (Non-Linear) . 78
15. PlantSystem Ports Sub-Language . 79
16. ControllerSystem Sub-Language (For Linear Plant) 80
17. ControllerSystem Sub-Language (For Non-linear Plant) 81
18. PowerJunction Sub-Language . 81
19. ReferenceSystem Sub-Language . 82
20. Sample Model of a Networked Control System (Linear Plants) 88
21. Velocity and Delay Plots (Nominal) . 89
22. Velocity and Delay Plots (Network Disturbance) 90
23. CrustCrawler 4 DOF Arm . 91
24. CrustCrawler Model . 91
25. Novint Haptic Paddle . 92
26. Control Design Layer . 92
27. Platform Design layer . 93
28. Plant Sub-system . 93
29. Controller Sub-system . 94
30. Reference Sub-system . 94
31. x-y-z coordinates and angle of joint 2 of reference, robot 2, and robot 3 95
32. Time Delay Between Robot 2 and Power Junction 96
33. Persistent link interruptions . 96
34. Intermittent connection . 97
35. System Model, Hmp . 101
36. PBAS Networked Control Architecture . 103
37. Simulation Results - PBASC Approach vs. FSP Approach in Nominal Case 117
38. Simulation Results - PBASC Approach with Introduced Delays 118
39. Simulation Results - PBASC Approach with Packet Loss 119
40. Experimental Platform Configuration . 120
41. Experimental Results - PBASC Approach vs. FSP Approach in Nominal Case 122
42. Experimental Results - PBASC Approach with Link Interruption 123
43. Experimental Results - PBASC Approach with Intermittent Wireless Connection . . 123

ix

12

44. Overview of NCSWT . 129
45. Base HLA Meta-Language . 130
46. Model-Based Design Architecture for NCSWT 133
47. NCSWT Meta Model . 133
48. Example Networked Control System . 135
49. NCSWT Model . 136
50. Control Design Meta Model . 136
51. Control Design Model . 138
52. Network Design Meta Model . 138
53. Network Design Model . 140
54. Model-Based Design Flow for NCSWT . 140
55. Run-Time Components . 142
56. Time synchronization between the NS-2 federate and the RTI 145
57. NCSWT Implementation Overview . 147
58. Design-Time Models for Networked Aerial Vehicle 148
59. Plots for the nominal case of the Networked UAV 149
60. Plots of UAV trajectory for packet loss rates 149
61. UAV trajectory for multi-hop communication 150
62. Design-Time Models for INCS . 152
63. End-to-End delay plot for the nominal case scenario of INCS 153
64. Output plots for the addition of background traffic and 30% packet loss in INCS . . . 154
65. End-to-End delay for the addition of background traffic and 30% packet loss in INCS. 155
66. Networked Control System . 161
67. Energy-Based Monitor . 178
68. Energy-Based Monitor (Non-Measurable States) 188
69. Simulation Results - Nominal Case . 189
70. Simulation Results - Min Attack on Vrk . 190
71. Simulation Results - Max Energy Attack on Vrk 191
72. Simulation Results - Additive Attack on Vrk 191
73. Simulation Results - Min Attack on Actuator, uk 192
74. Simulation Results - Max Attack on Sensor, yk 193
75. Simulation Results - DoS Attack on Vrk . 193
76. Experimental Setup for the Evaluation of the Energy-Based Attack Mechanism . . . 195
77. Experimental Results - Nominal Case . 196
78. Experimental Results - Min Attack on Vrk . 197
79. Experimental Results - Max Energy Attack on Vrk 197
80. Experimental Results - Additive Attack on Vrk 198
81. Experimental Results - Min Attack on Actuator, uk 199
82. Experimental Results - Max Attack on Sensor, yk 199
83. Experimental Results - DoS Attack on Vrk . 200

x

13

CHAPTER 1

INTRODUCTION

1.1 Motivation

The rapid advancement in digital technology over the past few decades has fueled the progress

in computation and communication technologies. Enabled by this progress, complex engineered

systems commonly referred to as Cyber-Physical Systems (CPS), resulting from the integration

of computing, communication and control, and in direct interaction with the physical world, are

becoming very ubiquitous in our daily lives [1]. Examples of these systems include process control,

automotive systems, networked robotics, medical systems, electrical power grids and environmental

monitoring systems etc. These real-world CPS are increasingly being monitored and controlled

by Networked Control Systems (NCS) and are often employed in critical settings, therefore the

assurance of properties such as stability, performance, safety and security are essential. As a result,

the design of NCS architectures has recently gained increasing attention and has become an area of

active research.

NCS can be described as control architectures which consist of plants (the systems or processes

to be controlled), sensors (components that collect information on the controlled plant states), con-

trollers (computing units where the control algorithms run) and actuators (components that apply

the computed control signals), whose operations are spatially distributed and coordinated through

information exchange over a communication network [2]. Although, NCS have existed for sev-

eral decades, the advancement in technology has resulted in the paradigm shift from the classical

point-to-point architecture, that is a wire connects a central computer with each sensor or actuator

point, to more modular architectures comprising multiple nodes communicating with each other

over communication networks, which are more suitable for real-world CPS.

The current paradigm shift in NCS architectures presents numerous benefits such as improved

efficiency, flexibility in system design and reliability through significantly reduced installation, re-

configuration and maintenance time and costs as well as ease of future expansion [3]. These benefits

have resulted in even further expanded roles for NCS applications.

1

14

1.2 Research Challenges

While NCS certainly provide numerous benefits, the complexity of their modeling, analysis and

design raises several challenges which need to be overcome to fully utilize the benefits. The most

significant challenge in the design of NCS is the impact of network and platform effects. The net-

work effects consist of network uncertainties, such as time-delays and the possible loss of packets,

introduced due to the use of a communication network while the platform effects are mainly as a

result of the implementation of the control algorithms which may be subject to quantization. These

network and platform effects pose considerable concerns due to their significant impact on overall

system stability, performance and safety.

A second challenge in NCS is due to the limited network resources and therefore limited infor-

mation exchange over the communication network. Increasing the availability of the plant’s current

information to the controller often leads to a better performance of the overall control system but

due to the constrained network resources this is not always possible. This limited availability of

sensor and control data packets has a direct impact on the achievable stability and performance of

the NCS. How to attain the desirable trade-off between satisfying the communication constraints as

a result of the limited network resources without sacrificing stability and ultimately performance of

the overall system is a challenging problem.

Due to the complexity of NCS, the modeling, analysis and evaluation of system properties and

behaviors under various conditions present another significant challenge. When building real-world

systems, typically, models of the systems are first created and extensively analyzed and evaluated

using simulations and experiments on various prototypes before the deployment of the actual sys-

tems. The complexity of NCS makes it difficult to determine the correct level of abstraction at

which to model these systems in order to enable effective and efficient analysis and evaluation to

ensure they satisfy the design requirements.

Finally, the introduction of the communication network and the often distributed nature of NCS

make these systems vulnerable to malicious attacks and pose security concerns. NCS expose multi-

ple entry points through which adversaries can exploit potential vulnerabilities and introduce mali-

cious artifacts. The presence of such attacks can be potentially catastrophic considering the safety-

critical nature of most NCS. Designing dependable and secure NCS that can guarantee safety or a

2

15

specified level of performance is a very important and challenging task. Understanding the areas of

vulnerabilities in NCS as well as determining effective designs and strategies to detect the presence

of attacks and techniques to handle these attacks is daunting, considering the complexity of NCS.

1.3 Overview and Contributions

In this section, we provide an overview of the dissertation and the contributions towards addressing

the outlined fundamental challenges involving the use of NCS architectures in the construction of

CPS. The technical contributions are contained in Chapters 4-7.

Chapter 2

This chapter presents the related work in networked control systems. We provide a background on

NCS architectures and passivity-based techniques. We review the various adaptive sampling strate-

gies. We also discuss the various approaches for the evaluation of NCS using simulation and the

integration of simulators. Subsequently, we discuss the dependability of NCS and provide a back-

ground on model-based detection. In addition, we review the recent work towards securing NCS.

Due to the importance of experimental platforms in evaluating NCS designs, we present a few NCS

applications related to our work. Finally, we provide a summary describing the relationship of the

related work to the research presented in this manuscript.

Chapter 3

A background on the concepts of dissipativity and passivity is presented in this chapter. We discuss

the properties of passive systems as well as the various passivity preserving interconnection rules.

We introduce the concept of passivity indices for quantifying the degree of a system’s passivity and

the use of passivity indices in rendering non-passive systems passive. Additionally, we discuss the

wave variable transformation, a concept closely related to passivity.

Chapter 4

The tight integration of the design layers in CPS makes it extremely difficult to guarantee global sys-

tem properties such as stability or a defined notion of performance. Additionally, the heterogeneity

makes it extremely challenging to apply model-based techniques through out the design process. In

3

16

order to address these challenges, in this chapter we introduce PaNeCS, an end-to-end tool-chain for

the analysis and design of passivity-based NCS that are robust to network effects. The underlying

idea of PaNeCS is that by imposing passivity constraints on the component dynamics, we can then

apply model-based techniques to simplify the design of NCS with stability guarantees, even in the

presence of network uncertainties. The specific contributions in this chapter are the following:

• In [4, 5, 6], using Model Integrated Computing(MIC) together with the concept of passivity,

we developed PaNeCS, a domain specific modeling language (DSML) for the compositional

modeling and design of passivity-based networked control systems. PaNeCS is integrated

with a component-based analysis tool for checking passivity of NCS components (linear sys-

tems) using linear matrix inequalities (LMIs). Using the object constraint language (OCL) [7],

PaNeCS enforces a set of structural compositional rules in the modeling of NCS. The combi-

nation of the compositional rules and the component-based analysis tool ensures a “correct-

by-construction” of passivity-based NCS designed in PaNeCS. The resulting designs are by

construction robust to implementation effects and network uncertainties.

• We developed a model interpreter that generates platform-specific simulation code from a

PaNeCS model, for NCS simulation in Matlab/Simulink and TrueTime in order to evaluate

the designed NCS under various network conditions. A case study on the control of multiple

linear plants over a wireless network is presented in order to evaluate the tool.

• We have also developed a model interpreter for the generation of executable from a PaNeCS

model, for running experiments involving a class of nonlinear Euler-Lagrangian systems

(such as networked multi-robot systems). We presented an experimental case study involving

the control of a networked multi-robot system.

Chapter 5

In this chapter, we present a passivity-based adaptive sampling control (PBASC) architecture, our

contribution towards addressing the challenges due to the limited network resources. The underlying

idea of PBASC architecture is to simultaneously allow the variability of sampling intervals as well

as ensure stability. The specific contributions of this chapter are highlighted as follows:

4

17

• We developed an approach that integrates two control theoretic concepts, passivity and adap-

tive sampling, and applied the integration to a trajectory tracking problem in a hierarchical

NCS [8]. In the integration, the passivity-based approach guarantees stability of the NCS

in the presence of network uncertainties while the adaptive sampling not only ensures the

efficient utilization of network resources but also provides the flexibility of incorporating net-

work scheduling adaptation. The integrated framework was used in [9, 10], for a joint design

of sampling rate adaptation and network scheduling in distributed networked control systems.

• We developed a pair of sample-and-hold components, a variable passive sampler and a vari-

able passive hold, that facilitates the integration of sampling-and-hold mechanism with vari-

able sampling intervals while maintaining passivity.

• We integrated an example sampling policy based on self-triggered control using a perfor-

mance criteria defined as a function of the error, in order to compute sampling intervals.

• Additionally, we demonstrated our approach with a case study on the trajectory tracking con-

trol of a robotic manipulator over a wireless network. We provide simulation results using

Matlab/Simulink/TrueTime. We also provide experimental results using an actual robotic ma-

nipulator and a wireless network. We compare our approach to the case of a fixed sampling

period. We show that the robotic manipulator tracks a desired trajectory while reducing the

utilization of network resources compared to the case of a fixed sampling period. We also

provide results to demonstrate the robustness of our approach under various network uncer-

tainties such as time-varying delays and packet loss.

Chapter 6

This chapter presents an integrated simulation framework for the effective and efficient evaluation

of network control systems. The accurate evaluation of NCS is challenging considering the hetero-

geneity of the design layers of NCS and the potentially different timing semantics of the simulators.

In order to address these challenges, we introduce NCSWT, a tool-chain for the modeling and simu-

lation of networked control systems based on the High Level Architecture (HLA), which guarantees

the accurate time synchronization and data distribution of the integrated simulation. Using MIC

5

18

techniques, NCSWT provides efficient modeling and integration of NCS components as well as

the generation of software components used in the simulation of the designed NCS. The specific

contributions in this chapter are highlighted as follows:

• We developed NCSWT[11, 12, 13], an integrated modeling and simulation tool which com-

bines two defacto simulation tools in their respective domains for the simulation of NCS. The

integrated simulators are Matlab/Simulink for the modeling, design and simulation of control

systems, and ns-2 for modeling and simulation of the communication networks.

• We developed three DSMLs. NCSWT MIL for the definition of components and information

exchange of NCS in terms of HLA-based concepts. CDML is designed for the integration

of control design concepts of the NCS while NDML is designed for the integration of the

network components of the NCS.

• We developed model interpreters integrated in the three DSML for the generation of software

components for the simulation of NCS.

• We provide a run-time environment for the simulation of NCS using Matlab/Simulink for the

control design component and ns-2 for the network components of the NCS.

• We present case studies for the modeling and simulation of NCS under various realistic net-

work conditions such as packet losses and time delays in order to illustrate the tool. NCSWT

has also be used to evaluate the NCS approaches developed in [9, 10, 14].

Chapter 7

In the previous chapters, the possibility of malicious attacks on NCS architectures was neglected. In

this chapter, we explicitly consider the possibility of cyber attacks on NCS infrastructures. We in-

troduce an energy-based approach for the detection of malicious attacks on NCS. The contributions

presented in this chapter are summarized as follows:

• We formulate the detection of attacks using the system property of energy. We define the

notion of energy-based monitor for networked control systems and introduce an energy-based

attack detector (EBAD), a monitor based on the intuitive concept of a system’s energy.

6

19

• We prove that EBAD solves the attack detection problem and also illustrate that the impact

of attacks on a system can be estimated as the excess or loss in a system’s energy. Based

on estimated energy, we qualitatively characterize the attack as being either passive or non-

passive.

• Based on well-known attack models, we illustrate the impact of the defined attacks on the

energy of a system using the energy-based formulation. We also present analytical results to

show conditions in which the attacks can violate passivity properties of the overall system.

• We evaluate the proposed methodology using simulations as well as experiments on a robotic

manipulator test-bed focusing on the velocity tracking ability of a single joint over a network.

The results show that the detector is effective in detecting the presence of attacks on NCS in

addition to characterizing the impact of the attacks.

Chapter 8

This chapter provides a summary of the work contained in the manuscript, and describes the future

directions in which the current research could be improved.

7

20

CHAPTER 2

RELATED WORK

NCS is a multi-disciplinary research area involving concepts and methods from control, commu-

nication, operations research, computer science and management science. In this chapter we discuss

works that are relevant and directly related to the contributions of this dissertation. In particular, we

focus on passivity-based design of networked control systems, adaptive sampling, model-based de-

sign approaches, NCS simulation frameworks, dependability and representative NCS applications.

We provide an introduction of the main configurations and categories of NCS as well as a review of

teleoperation and passivity-based NCS in Section 2.1. We introduce the concept of adaptive sam-

pling in Section 2.2. Section 2.3 discusses model-based design techniques and provides a review of

the various approaches for simulating NCS. Section 2.4 introduces the concept of dependability and

model-based detection, in addition to a review of security in NCS. We describe representative NCS

applications in Section 2.5. Finally, Section 2.6 discusses how the contributions of the dissertation

compares to the scope of the literature.

2.1 Networked Control Systems

In this section, we first introduce the main configurations of NCS and then we describe the categories

of NCS. Focusing mainly on the control over networks category of NCS, we describe the various

techniques for addressing the various network effects. We then provide a review of existing works

in passivity-based NCS.

2.1.1 Configurations of Networked Control Systems

The two general configurations in NCS are the direct structure and hierarchical structure [15, 16,

17]. These configurations are described as follows:

8

21

2.1.1.1 Direct structure

The direct structure is the more common of the two structures. In this configuration, the NCS is

composed of a controller and a remote system containing a physical plant, sensors and actuators as

depicted in Figure 1. The controller and plant are typically located at different locations and are

linked by a data network in order to perform closed-loop control. This structure is widely used in

several application such as DC motor speed control [18] and distance learning lab [17].

Figure 1: Direct Structure of NCS

2.1.1.2 Hierarchical structure

The hierarchical structure typically consists of a main controller and a remote closed-loop system

as depicted in Figure 2. The main difference between the direct and hierarchical structure is the

presence of a local controller in the hierarchical configuration. In a typical operation in this con-

figuration, the main controller computes and sends control information via a network to the remote

system. The local controller of the remote system then processes the information to perform local

closed-loop control. This structure is widely used in several applications such as robotic manip-

ulator control [19, 20], mobile robots [21], teleoperation [22, 23] and unmanned aerial vehicles

(UAVs) [24, 25] etc.

The use of either structure is based on the application requirements as well as the preference of

the designer. Clearly, the control and analysis of the direct structure can be applied to that of the

hierarchical structure by simply treating the remote closed loop system purely as a plant.

9

22

Figure 2: Hierarchical Structure of NCS

2.1.2 Classification of Networked Control Systems

Research in the field of NCS can be generally categorized into three main areas namely multi-agent

systems, control of networks, and control over networks [26]. We will describe each of the categories

but we will focus mainly on the control over networks.

2.1.2.1 Multi-agent systems

Multi-agent systems deal with how network architectures and interactions between networked com-

ponents influence global control objectives. The main problem associated with multi-agent systems

is mainly to understand how local laws describing the behavior of the individual agents impact the

global behavior of the overall networked system. Research in multi-agent systems can be further

categorized into two main areas of active research.

1. The first area involves the design and analysis of distributed estimation techniques. The ap-

plication of this area is the framework of sensor network technologies. There’s a growing

need for distributed collection and processing of information measurements using tools and

algorithms that provide high performance in terms of online estimation. The requirements for

these algorithms are often to reduce communication load among sensor nodes and robustness

to packet losses and node failures.

The distributed estimation for sensor networks has been a very active area of research in the

field of communication theory, computer science and signal processing [27, 28], it is only in

10

23

the past few years that considerable attention has been devoted to this area within the control

community. The authors in [29] first related the the consensus problem in a distributed setting

to the distributed estimation problem. Their idea resulted in a new approach to distributed

Kalman filtering as described in [30, 31]. The work in [32] provides an interesting survey

on this subject. Various extensions such as to switching topologies [33, 34] and to randomly

switching topologies [35] have also been developed. The work in [36] provides a nice dis-

cussion in regards to the use of sensor networks in control applications. Additionally, other

works in this area involve designing resilient distributed multi-agent systems in the presence

of adversaries as described in [37, 38] and references therein.

2. The second area of active research in multi-agent systems involves the control of autonomous

agents such as robots and unmanned vehicles. Groups of autonomous agents with computing,

communication, and mobility capabilities are becoming economically feasible and can per-

form a variety of spatially distributed sensing tasks, such as search and rescue, surveillance,

environmental monitoring, and exploration. In typical examples of motion coordination prob-

lems, groups of autonomous agents require the ability to cover a region of interest, to assume

a specified formation, to rendezvous at a common point, or to move in a synchronized manner

as in flocking behaviors.

The literature on the control of group of autonomous agents is exorbitant and rapidly grow-

ing. An important contribution towards a network model for mobile interacting agents was

introduced in [39] for the case of mobile robots. This model consists of a group of iden-

tical distributed anonymous mobile robots whereby no explicit communication takes place

between them, and at each time instant of an activation schedule, each robot senses the rela-

tive position of all other robots and moves according to a pre-specified algorithm. In [40], the

authors analyzed the communication complexity for control and communication algorithms

in multi-agent network of robots. [41, 42] provided a comprehensive set of models and the

time complexity analysis of numerous algorithms. Over the years, there has been a lot of

progress in regards to distributed motion coordination algorithms, such as in pattern forma-

tion [43], flocking [44, 45], swarm aggregation [46, 47], self-assembly [48], deployment [49],

rendezvous [50] and cyclic pursuit [51].

11

24

2.1.2.2 Control of Networks

Control of networks is mainly concerned with providing a certain level of performance or quality

of service (QoS) to a network data flow, while achieving efficient and fair utilization of network

resources. The control of networks is a very active research area. The ability to measure and

modify network parameters is typically a fundamental requirement in order to be able to control

network performance.

The fundamental problems of interest in the area of control of networks are scheduling, call

admission, routing, power control, flow control and various other resource allocation problems.

There has been some significant progress in the theoretical understanding of network congestion

control for example in the the seminal work by [52]. By explicitly modeling the congestion measure

signal fed back to the sources, and by posing the network flow control as an optimization problem

where the objective is to maximize the total source utility, it is shown that the rate control problem

can be solved in a completely decentralized manner [52, 53]. It is often important to assess the

dynamical properties, such as stability and convergence, of the schemes in order to ensure the

system will reach and maintain a favorable equilibrium. In most of the existing works, the effect of

network delay is ignored. The assumption is typically that the price information, which reflects the

cost of network resource usage, is available instantaneously at the source, whereby the sources take

immediate action, and that the new rates affect the link prices instantaneously. However, stability

of the protocols in equilibrium depends critically on the feedback delay and on the interactions

between the protocol implementations and the network dynamics.

Some of the recent works in the area of congestion control include development of mathematical

models for flow control under various Internet protocols [54, 55, 56]. Scalable and distributed

optimization algorithms have been developed for these control systems [57, 58]. The impact of

nonlinearities and time delays in the network flow models have also been considered in [59, 60, 61,

62]. From a resource control perspective, wireless networks are often considered, this is due to the

fact that whereas the link capacities in wireline networks are fixed, the capacities of wireless links

can be adjusted by the allocation of communication resources, such as transmit powers, bandwidths,

or time slot fractions, to different links. The adjustment of resource allocation changes the link

capacities, influences the optimal routing of data flows, and alters the total utility of the network.

12

25

Hence, optimal network operation can only be achieved by coordinating the operation across the

networking stack. This is generally referred to as cross-layer design. Resource allocation and

congestion control are becoming increasingly important [63, 64, 65, 66];

2.1.2.3 Control over Networks

Control over networks deals with the design and analysis of feedback methodologies adapted to

control systems in which control data is exchanged over unreliable communication links. The main

objective of control over networks is to provide quality-of-control (QoC), which is the performance

delivered by the closed-loop operation distributed over a communication network. As described in

Section 1.2, although there are several advantages in using NCS, there exist some drawbacks due

to the presence of the communication network. Numerous techniques aim to formally characterize

NCS properties such as as stability and performance [67, 68, 69]. Research in this area aims to

achieve a specified QoC while at the same time handling the network effects including network-

induced delays and data dropouts.

Several works have investigated design methodologies for addressing network delays in NCS.

In [70, 71], the authors proposed an augmented deterministic discrete-time model methodology

which essentially augments the state space of a control system in order to handle network delays,

the methodology was extended to handle non-identical sampling periods of a sensor and a controller

in [72]. The works in [73] developed a deterministic predictor-based approach to control NCS in the

presence of delays. The idea is to reshape the random network delays such that the NCS becomes

time-invariant. The approach then uses observers in order to estimate the plant state and a predictor

to compute the predictive control based on past output measurements. Nilsson in [74] proposed an

optimal stochastic methodology to control NCS on random delay networks. This approach treats the

effects of random network delays in NCS as a Linear-Quadratic-Gaussian (LQG) problem which

typically aims to minimize a specified cost function.

In other approaches, [75, 76] used non-linear and perturbation theory to formulate network

delay effects in NCS as the vanishing perturbation of a continuous-time system under the assump-

tion that there is no observation noise. This approach is restricted to priority-based networks and

systems with small sampling periods. In [77], the authors proposed a sampling time scheduling

methodology which appropriately selects a sampling period for NCS such that network delays do

13

26

not significantly affect the control system performance and the NCS remain stable. The authors in

[78] proposed a networked controller design in the frequency domain using robust control theory.

The major advantage of this approach is the lack of the need for a priori information about the the

probability distribution of network delays. In [79], the authors proposed a fuzzy logic modulation

methodology for NCS with a linear plant and a modulated PI controller to compensate the network

delay effects based on fuzzy logic [80]. The PI controller gains using this methodology are exter-

nally updated at the controller output with respect to the system output error caused by network

delays. In [69], a survey on the state of the art design methodologies that take into account the

effects of packet losses is presented. In [68], packet loss between the controller and the actuator is

considered and the separation principle is applied but only for TCP-like communication protocols

where packet loss acknowledgment is available unlike in the UDP-like protocols.

The research efforts in [81, 82] have investigated the effects of quantization at length focusing

mainly on control and stabilization. In [81], the authors presented a technique to address delays

and quantization using a unified framework. The work in [83] proposed a method which aims at

decoupling the control design from the implementation layers. This methodology allows the design

of state-feedback controllers that minimize a quadratic performance bound for a given level of

delay using linear matrix inequalities and also allows the truncating the coefficients of the controller

while guaranteeing that a given set of performance constraints is met. The work in [84] adopted

this approach in studying the performance degradation caused by time-varying delays.

In addition, other control approaches have been developed to tolerate and compensate for the

impact of various network uncertainties in NCS. Some of these approaches include the development

of new control paradigms to improve performance and security of NCS whereby the network itself

acts as a controller such as in [85] while some approaches include the uncertainties of the network

as part of the model as in [86]. Gain-scheduling techniques [87] and model-predictive control

techniques [88, 89] have also been proposed to handle network uncertainties in NCS.

The use of passivity-based techniques in NCS has been recently generating a lot interest because

of the nice robustness properties that passivity provides. Passivity-based design of NCS is funda-

mental to our proposed contributions, therefore, in the Section 2.1.4 we review passivity-based NCS

but before that we take a brief look at teleoperation, from which most of the passivity-based NCS

designs are derived.

14

27

2.1.3 Teleoperation

Teleoperation, which naturally indicates to operate at a distance, extends the human capability to

manipulate objects remotely by providing an operator with similar conditions as those in a remote

environment [23]. The most common case of teleoperation is often associated with the control

of a remote robot using a local robotic device, possibly a simple remote control. The main goals

of teleoperation is to maintain stability of the overall system irrespective of the behavior of the

environment and also to be able to provide the operator with a sense of telepresence, in the form of

sensory feedback. Oftentimes in practice, the only feedback available to the operator of the local

robotic device is visual. In most of the literature in teleoperation, various approaches are sought

in order to design interfaces with the remote robot that provide rich forms of feedback in order to

ensure telepresence and at the same time maintain stability. The underlying reasoning is that a high

level of telepresence will provide the operator with a great sense of control of the remote robot,

and therefore improve the precision and dexterity of the operator when performing tasks remotely.

Applications of teleoperation are numerous, ranging from operating underwater vehicles [90], space

robotics [91], telesurgery [92], operating mobile robots [93] and handling radioactive materials [94].

Most of these applications are safety-critical and hence effective and efficient strategies are of utmost

importance in order to ensure that the two main objectives, stability and telepresence, are achieved.

Before the actual deployment of teleoperation, training is often required in order to get the

operator accustomed to the task at hand. To facilitate training in teleoperation applications, vir-

tual environments are often used. In this case, the remote robot is replaced by virtual interactions

between objects in a simulated environment. The advantages of virtual environment has fostered

research in such areas as virtual reality that are involved with the development of realistic virtual

environments that assist in training potential operators in teleoperation [95].

One way to provide additional sensory feedback information is through haptic technology, or

haptics. Haptics provide tactile feedback, and may be used when interfacing with a remote robot

as in teleoperation, or with a virtual environment. In order for the haptic device to provide useful

tactile information, it is important for the operator to “feel” in some sense the forces exerted on the

remote robot (or within the virtual environment). This ability is termed transparency. One way to

do this is by closing the loop on the forces acting on the remote robot (or actuate virtual forces from

15

28

the virtual environment). Teleoperation with force feedback is known as bilateral teleoperation.

The inspiration for most of the passivity-based techniques for NCS came from the field of bilateral

teleoperaion. A bilateral teleoperation system, should be designed in such a way so as to provide the

operator with realistic force feedback in a stable manner. However, bilateral teleoperation systems

have an additional source of instability caused by the network through which the operator controls

the remote robot. The network is a source of delays and data loss, which can destabilize even passive

systems. Therefore, the wave variable formalism has been combined with passive techniques to

address delays [96].

In a more recent work [97], performing bilateral teleoperation over the internet has been consid-

ered. In this work, it is shown that passivity in the communication channel can be maintained with

both fixed and time-varying delays provided the controller handles dropped data and reordering of

data appropriately. In [98], this idea is extended to both continous-time and discrete-time models of

the teleoperation system by using the scattering transformation with communication management

modules (CMMs). The CMMs, which are introduced to properly handle the wave variables output

from the network so as to maintain passivity, consists of interpolation components and queue man-

agement. The interpolation components allow for compensation from packet loss and time varying

delays. The queue management helps to mitigate bursty network behavior by compressing data

during periods of decreasing delay and expanding the data during periods of increasing delays and

packet loss. In this manner, the queue management prevents both extremes; namely, empty queues

and queue overflow.

A very expressive approach that is well-suited for modeling teleoperation systems is the port-

Hamiltonian formalism. Port-Hamiltonian systems are generalizations of port concepts from elec-

trical network theory. Port-Hamiltonian systems are inherently passive and are easily augmented

with wave variables [99]. Using the port-Hamiltonian formalism, the authors in [100] showed how

to model a sampled data system. They showed that the interconnection between discrete and con-

tinuous port-Hamiltonian systems can be made to preserve passivity. An important factor for pre-

serving passivity in a sampled data system is to ensure discrete energy leaps , normally introduced

by the zero-order hold interface between the continuous and discrete time components, are handled

properly. The developed port-Hamiltonian sampled data theory is then applied to telemanipulation

and haptic interfaces to show that passivity is maintained even with dropped data and time-varying

16

29

delays. This is done by construction rather than requiring the passivity observer and passivity con-

troller as in [101].

2.1.4 Passivity-based Design of NCS

Passivity-based techniques have been successfully used in NCS for achieving robustness to network

uncertainties [102] and provide significant advantages dealing with network delays, packet losses

and quantization. Passivity properties has profound robustness to disturbance and uncertainties

which makes it an important tool for NCS applications. Typically, passivity-based techniques used

in NCS typically rely on the notion that all the components of the NCS are passive. In addition

to that, information exchanged over the network is transmitted in such a way in order to preserve

passivity. This is typically because network uncertainties can negatively impact the passivity of

the overall NCS. For example, when delays are introduced in feedback loops such as in NCS,

the network is no longer passive. One way to recover passivity or stability is through the use of

scattering transformation or wave transformation. The work in [103] introduced the first use of

scattering transformation in the setting of NCS. Using an NCS composed of a linear time-invariant

(LTI) single-input, single-output (SISO) plant and controller in a feedback configuration, the authors

showed that using the scattering transformation stability (asymptotic stability) of the closed loop

system can be ensured independent of delays. An example application involving a a single degree of

freedom pendulum was used to demonstrate the approach, the results showed desirable performance

in the presence of time delays.

The passivity of the traditional feedback of two continuous-time systems in the presence of

constant and time-varying delays in the feedback loop was explored in the work by Chopra in [104].

Using the notion of storage function as it relates to passivity, the authors show that with constant

delays, the overall configuration is always passive. Additionally, in the presence of increasing

delays, the authors showed that small gains bounded by the time derivative of the time-varying

delays can be used to maintain a passive configuration.

In [105], the authors proposed a generalization of the scattering transformation for a special class

of conic nonlinear systems [106], referred to as input-feedforward output-feedback-passive (IF-

OFP) nonlinear systems. The objective of the approach is to maintain L2-stability in the presence

of arbitrarily large and unknown constant time delays. In the proposed methodology, the controller

17

30

can be designed beforehand to meet very aggressive performance criteria under the assumption of

no delays. Then the generalized transform is introduced to ensure stability of the system in the

presence of constant delays and can be designed with low sensitivity to delay. By a comparison

of their approach to the traditional small-gain approach and to the design without the generalized

transform in simulations, the authors showed that their proposed approach demonstrated much better

performance objectives while maintaining stability in the presence of constant delays.

Similar to the approach in [105], the authors in [107] proposed an approach to maintain passivity

which utilizes a passive sample-data approach in the control of a continuous-time plant with a

digital controller over a wireless network. Given that the information exchanged over a packet-

switched network, the authors used the scattering transformation to produce continuous-time wave

variables in order to send and receive information over a network. In order to maintain passivity, the

sample-and-hold mechanism were performed using a passive sample-and-hold device to transform

the wave variables into discrete-time. The passive sample-and-hold device used by the authors is

based on ideas from the sampled data approach of [100]. As in [100], the approach maintains

passivity even with certain types of time-varying delays and data loss. Further, the authors proposed

a generalization of the approach to conic systems in multirate networks in the work [108].

In [109], introduced another approach to passivity-based NCS incorporating wave variables.

This approach involves a component-based design of NCS in the presence of time-varying delays

and data loss. The main objective of the work is the ability to control multiple components at the

same time as well as the ability to add and remove elements (plants and controllers) from the NCS

while maintaining passivity and L2-stability (a form of bounded input, bounded output stability).

The main component in the proposed approach is a passivity-based abstraction called power junc-

tion. The power junction, a hub-like component, interfaces between the plants and controllers within

the star network. The power junction can be considered as a dissipative element and is essentially

a wave digital filter [110], designed to guarantee passivity of the network. In regards to operation,

the power junction takes as input wave variables and generates the same number of output wave

variables in such a way that the input power is never less than the output power. The averaging

power junction which averages the input power and generates all output waves equal to the average

input power was introduced in [109] and is shown to maintain passivity in the network. It is also

shown how to distribute the functionality of the power junction over all nodes in a ring network

18

31

configuration. The work in [111] proposed an extension of this work, which provides an improved

averaging power junction that exhibits better performance as demonstrated in the provided simula-

tions. The work in [112] explored different implementations of power junctions. In this work, the

authors used simulations to compared two lossless power junctions, the averaging power junction

and a daisy-chain power junction, referred to as a consensus power junction. In [113], the authors

introduced a distributed form of the power junction which is used in a multi-agent framework to

perform various cooperative control objectives such as deployment. In this framework, each agent

in the network has its own power junction, which is incorporated in order to ensure that the infor-

mation exchanged between its neighboring agents maintains passivity and hence passivity of the

overall networked system.

2.2 Adaptive Sampling

In most control applications, control engineers have typically designed controllers without consid-

ering that the required resources to achieve a particular control objective are limited. Specifically, in

NCS, control engineers assume the channels between sensors, controllers and actuators are infinite

bandwidth, noise free and delay-free. As have been witnessed over the years, the effects of limita-

tions and uncertainties of the communication network can no longer be neglected. Owing to the

limited resources, the fundamental questions in designing control systems over a communication

network are “how frequent should a system be sampled” and “how often should information be sent

over a communication network”. The classical and well-studied approach is the periodic sampling

approach, whereby a system is sampled based on a fixed interval that is set a-priori. In this approach,

engineers tend to rely mostly on rules of thumb such as sampling with a frequency of between 20-40

times the system bandwidth[114]. This approach is typically referred to as an “open loop sampling

approach” because regardless of the condition of the overall system, the sampling interval is fixed.

A recent effort has brought about a shift in perspective by event-triggered control [115, 116], which

is a type of the generalized notion of adaptive sampling. In this paradigm, rather than the periodic

communication and computation of control law and sensor signals, sampling is the based on the

notion that the occurrence of an event results in the control and/or communication of control law

updates and sensor signals.

Adaptive sampling can generally be categorized based on the two main NCS components from

19

32

which an event or triggering behavior for adaptation originates. The two categories are:

2.2.1 Event-Triggered and Self-triggered Control

In event-triggered control, the sensor transmissions and control updates are initiated at instants de-

fined by the occurrence of events taking place at the sensor or controller. Typically, the events

are generated when a certain triggering condition defined as a function of system state exceeds a

certain threshold. The concept of event-triggered control has appeared under different names such

as interrupt-based feedback [117], Lebesgue sampling [115] or state-triggered feedback [118]. In

event-triggered control, a hardware event detector is typically required to generate a hardware inter-

rupt in order to signal the violation of a condition and the initiation of sampling. This is typically

done using either field-programmable gate array (FPGA) processors or application-specific inte-

grated circuit (ASIC). Hence, provided the cost associated with the hardware detector is reasonable,

the event-triggered control is a very useful method for adaptive sampling. It provides the benefit of

reducing communication transmissions and also the energy consumptions of computing and sensor

nodes potentially extending the battery life span of these systems.

In the past few years, there has been numerous efforts in the design of event-triggered control

approaches. The author in [119] used input-to-state (ISS) stability property of a system with respect

to measurement errors to derive an ISS event-triggering scheme which guarantees that the Lyapunov

function of the system is monotonically decreasing. This triggering scheme was extended in [120],

and with the new scheme the authors noted that the monotonically decreasing requirement in [119]

is not necessary to guarantee asymptotic stability at each sampling/transmission instant. Other

lyapunov-based approaches were proposed in [121]. Dead-band approaches, whereby sampling or

transmission is triggered when a measurement exceeds a threshold, were utilized in [122, 123, 124,

125, 126]. In [127, 128, 129], event-based control techniques for linear stochastic systems were

proposed. A passivity-based approach for ensuring L2−stability in the event-triggered framework

was explored in [130].

In [131, 132], the authors explored the application of event-triggered control to multi-agent

systems. Other works investigated distributed event-triggered control [133, 120]. The authors

in [134, 135] proposed an architecture for performing event-triggered control for unknown or un-

certain plant models.

20

33

Another well-known adaptive sampling control approach is self-triggered control. Self-triggered

control is an alternative to the event-triggered control especially in the cases where it may be im-

practical or unreasonable to integrate event detectors. In contrast to the event-triggered control,

self-triggered control is a software-based approach. In self-triggered control, the next sampling or

triggering instant is computed based on the current measurement and the model of the system. This

can be seen as an emulation of the event-triggered scheme described above. The benefit of this

approach is the lack of the need for continuously monitoring a triggering condition. Self-triggered

control was introduced in [136] in which a heuristic approach is used to adjust sampling intervals.

Several research studies have been proposed for this approach both for linear and nonlinear sys-

tems [137, 138, 139].

Minimum-attention control, another adaptive sampling approach, which was introduced by [140]

has been recently revisited in [141, 142] as well as anytime control [143, 144], with the overall ob-

jective of maximizing the sampling interval when performing closed-loop control over networks

by essentially minimizing the attention the control loop requires, while guaranteeing a certain level

of closed-loop performance. This approach is similar to the self-triggered control but the differ-

ence lies in the fact that unlike the self-triggered approach, the minimum-attention control approach

is typically not designed using emulation-based approaches in the sense that it does not require a

separate feedback controller to be available before the triggering mechanism can be designed.

In most of these works that are devoted to the development of adaptive sampling techniques

for control systems, the interaction with the network has not been fully addressed. Only a few of

the approaches have attempt to address the impact of network effects such as packet losses and

delays. An analysis of event-triggered control with packet losses and delays has been presented

in [145, 146, 147, 148] for simple wireless network abstractions. The system-level design of self-

triggered controllers over a wireless network for a single control loop and multiple loops has been

addressed in [149].

2.2.2 Network-based or QoS-based adaptive sampling

In network-based or QoS-based sampling, the sampling rate of the NCS is determined based on net-

work quality of service (QoS) metrics such as delays, throughput and frame loss. In this approach,

adaptive sampling is triggered by the response to events or activities from the network component of

21

34

NCS and hence determines when to send sensor updates as well as control updates over the network.

Various research efforts have been devoted to sampling rate adaptation, as it is commonly re-

ferred to, from the network perspective. The work in [150], motivated by the goal of maintaining

low levels of data loss while keeping to the highest possible rate of sampling and control, showed

positive results have been obtained by dynamically adjusting sampling rates to reflect changing

network conditions. [151] proposes an heuristic algorithm to adapt bandwidth allocation of control

systems over a CAN bus based on two factors, network load and stability threshold. Another heuris-

tic approach was provided in [152], where a heuristic approach was proposed to adaptively adjust

the sampling rate of NCS based on QoS metrics, delay and packet loss, for the overall objective of

improving the quality of control performance. In [153], control systems vary their sampling periods

based on the congestion level of Wide Area Networks (WANs) which is fed back from the network.

It allocates bandwidth to avoid network congestion of WANs and preserves high performance level

for NCS. A convex optimization is lower bounded by the minimum rates that guarantee system sta-

bility, and upper bounded by the total network capacity. [154] varies the sampling rate period of

each controller based on the state estimation of network conditions, system stability/performance

requirements, and computation/bandwidth limits of the hardware. It is then solved by dual Lagrange

multipliers in a fully distributed manner. The work in [155] adapts the sampling interval based on

the measurement of round-trip delay and assures stability in the mean square sense using discrete-

time Markov jump linear system (MJLS) theory. The MJLS is based on an ‘a priori’, static sampling

policy, with network dynamics described as linear time-invariant systems switching between a fi-

nite combination of sampling interval and delay. Bao [156] proposed a rate allocation technique to

minimize the distortion introduced by quantization over a noisy channel. An optimization problem

is constructed with the objective of minimizing the linear quadratic cost by means of mean squared

error (MSE), constrained by the total rate, and solved using Lagrange duality. Ploplys in [157] pre-

sented experimental results on the NCS over a wireless network whereby changes in the network

performance resulted in the adaptive tuning of the sampling rate.

2.3 Model-Based Design and Simulation of NCS

In this section we provide a brief introduction of model-based design in control systems as it relates

to NCS. We also describe the various approaches for the simulation of NCS.

22

35

2.3.1 Introduction of Model-Based Design in Control Systems

Model-based design methodologies are emerging as the most convincing alternatives in address-

ing the difficulties and complexities involved with the development of embedded control systems

compared to the classical methods based on low-level languages and intense prototyping activi-

ties [158, 159]. Model-based design for embedded control systems involves creating models and

checking correctness at different stages in the development process [160]. The design flow pro-

gresses along precisely defined abstraction layers and typically follows the well-known “V-model”.

In the model-based design process, there is a defined hierarchy of models representing the various

design decisions. Typically, the design starts with an abstract model of the system based on coarse

specifications. Subsequently, the designers refine the design and the models of the subsystems and

components until the desired level of detail that accurately represents the dynamics of the compo-

nent under consideration. For control systems, it starts with control design and then proceeds to

simulation and debugging with dedicated tools, followed by system-level design for the specifica-

tion of platform details, code organization, and deployment details, and the final stage of integration

and testing on the deployed system.

2.3.2 Model-Based Design of Networked Control Systems

The model-based design for embedded control systems, described above, cannot be directly applied

to NCS because the domain heterogeneity and the existing tight coupling between design concerns

in NCS create a number of challenges. Ensuring controller stability and performance for physical

systems in the presence of network uncertainties (e.g. time delay, packet loss) couples the control

and system-level design layers. In addition, downstream code modifications during testing and

debugging invalidate results from earlier design-time analysis and any component change often

results in restarting the design process.

A number of research projects seek to address the problems of model-based design for NCS. The

ESMoL modeling language for designing and deploying time-triggered control systems explicitly

captures in model structure many of the essential relationships in an embedded design [161, 162].

The ESMoL tools include schedule determination for time-triggered communications, code genera-

tion, and a portable time-triggered virtual machine. AADL [163] is a textual language and standard

23

36

for specifying deployments of control system designs in data networks [164]. AADL projects also

include integration with verification and scheduling analysis tools. The Metropolis modeling frame-

work [165] aims to give designers tools to create verifiable system models. Metropolis integrates

with SystemC, the SPIN model-checking tool, and other tools for scheduling and timing analysis.

2.3.3 Simulation of Networked Control Systems

As NCS become increasingly complex, it becomes more challenging to formally analyze NCS prop-

erties such as stability and performance. As a result, there is a pressing need to evaluate both the

control system and the networking system holistically for a rapidly growing number of applications.

Simulation is a powerful technique for evaluation and can be used at various design stages.

An intuitive approach is to engineer a new tool from scratch that would essentially contain

modules of the control system dynamics and for the communication network but a good practice

and basic principles of engineering is to rely on well-developed ideas as much as possible and avoid

reinventing the wheel [166]. The approach of engineering a new tool has been explored in [167, 168,

169]. However, the use of existing tools seems like the right approach based on basic engineering

practices. There are two main approaches in using existing tools for the simulation of NCS. The

first approach involves extending the features of an independent simulator to enable the simulation

of both the control dynamics and communication network of a NCS, we refer to this category as

monolithic frameworks. The second approach involves the integration of independent tools whereby

each tool is designed for simulating a specific domain (control dynamics or the communication

network) of a NCS, we refer to this category as heterogeneous simulation frameworks.

2.3.3.1 Monolithic Simulation Frameworks

The approach involving the extension of independent simulators for NCS simulation can be further

categorized into two approaches, the extension of network simulators and the extension of simula-

tors for dynamical systems.

1. Extending Network Simulators

This approach involves extending independent network simulators to support the simulation of phys-

ical systems and control dynamics. Various attempts have been made to extend network simulators

such as ns-2 [170] and OMNet++ [171] to simulate NCS. In [169], the authors extended ns-2 in

24

37

order to simulate the dynamics of plants and controllers that are modeled by differential equations

(solved via a linked package), this approach was later extended in [172].

The main issue with this approach is that it requires the physical system and control algorithm

to be fully implemented in a high-level language such as C++. This becomes very difficult as the

complexity of the NCS increases. Hence, using this approach is very difficult to accurately model

and simulate the dynamical systems of NCS.

2. Extending Simulators for Dynamical Systems

This approach mainly consists of extending simulators for dynamical systems to also simulate the

events and dynamics of the communication network. Various attempts have been made towards this

direction to extend simulators such as Matlab/Simulink [173], Modelica [174] and Ptolemy [175]

etc. For example, network simulation is provided in Matlab/Simulink using add-ons such as True-

Time [167]. A new version of TrueTime has also been developed to extend Modelica to enable the

simulation of communication networks [176]. VisualSense is an extension of Ptolemy that enables

the simulation of the communication network [177].

The main issue with this approach is in regards to the accuracy of the simulation of the com-

munication network which depends on the level of abstraction of the network protocol models. For

example in TrueTime, the network protocol only supports the simulation of the medium-access and

physical layers but not higher level protocols such as TCP or UDP protocols, which are essential

to precisely model the network stack in order to simulate the communication network of a NCS.

Hence, these tools lack the fine-grained simulations of network dynamics [166].

Based on the two monolithic simulation frameworks, it can be seen that in order to develop a

realistic and accurate simulation of NCS, it would be best to integrate existing tools for the accurate

simulation of the control dynamics as well as the networking system of a NCS.

2.3.3.2 Heterogeneous Simulation Frameworks

Heterogeneous simulation frameworks coordinate the simulation of multiple different types of mod-

els as opposed to a monolithic framework. The heterogeneous models may typically be composed

of various aspects of a single system or of distinct systems within a system. This framework is ideal

for the simulation of NCS since various tools can be integrated in order to simulate the dynamics of

NCS. The integration of existing tools for the accurate simulation of NCS, although very beneficial,

25

38

faces several challenges such as the time synchronization between the simulators which is critical to

preserve the correctness of the simulation, the data communication between the simulators to ensure

consistent data semantics during the simulation and scalability of modeling NCS in the framework.

Several efforts have been made toward integrating multiple simulators in order to effectively

simulate NCS. PiccSIM presented in [178] allows the integration of Matlab/Simulink models with

ns-2 and provides a graphical user interface for the design of NCS and the automatic code generation

of ns-2 and Matlab/Simulink models. In [179], a special simulator interface, implemented in C/C++

is used to integrate the simulators, ModelSim, Matlab/Simulink and ns-2 to establish the commu-

nication between the simulators. Other integration tools for NCS include [180][181], ADEVS/ns-2

integrated tool [168], Modelica/ns-2 integrated tool [182] which was extended in [166] to provide a

more accurate synchronization and ability to handle event-triggered control systems.

The above approaches described for the integration of simulators are not standardized frame-

works and hence it is difficult to evaluate the accuracy of the integration. An example of such a

standardized framework for integration of simulations is the High Level Architecture which we will

review in the following section.

2.3.3.3 High Level Architecture

The High Level Architecture (HLA), originally defined by the Defense Modeling and Simulation

office for the U.S. Department of Defense, is a standardized software architecture that provides the

ability to link different kinds of simulations, simulators, models and other tools, each designed for a

specific problem domain. The primary motivation for its development was to support “composable”

simulation [183]. HLA comprises of three main components the Federation framework and rules,

the Run-Time Infrastructure (RTI) Interface specifications, and the Object Model Template. In

HLA, the independent simulations, simulators, models and tools are known as the federates. An

HLA simulation composed of the federates is known as the federation. The RTI is the software

component that implements the HLA interface specification and runs the federation. It provides a set

of services to support federate to federate interactions and federation management support functions.

Communications between different federates is based on shared objects and interactions whereby

objects are analogous to the shared memory in an operating system and are owned by one federate

while interactions represent message passing.

26

39

The HLA RTI interface specification describes six types of runtime services between federates

and the RTI, they include Federation Management, Declaration Management, Ownership Manage-

ment, Object Management, Time Management and Data Distribution Management. The Federation

Management service provides functionality that allows for creation of federations, joining and re-

signing of federates and the overall management and synchronization of federations. The Declara-

tion Management service provides for an efficient data exchange between federates. Each federate

use this service to define which data it will provide to and require from the federation. Through the

Ownership Management service, RTI controls ownership of the HLA objects and their attributes.

Only a federate owning the attribute can update the attribute of an HLA object in a federation.

However, RTI can dynamically transfer the ownership of an attribute/object during a federation.

The Object Management service facilitates the creation, deletion, identification and other services

at the object level. The Time Management service is responsible for synchronization of run time

data exchange. Through this service, RTI controls when federates update and receive the events.

Finally, the Data Distribution Management services allows for efficient routing of data among fed-

erates [183, 184].

The HLA OMT is a standard template that defines form, type and structure of data shared

within the federation. The OMT defines two formats for describing this information. HLA specifies

two types of object models namely Federation Object Model (FOM) and Simulation Object Model

(SOM) and requires that these models be documented in accordance with the OMT. The FOM

describes the set of objects, attributes and interactions that are shared across a federation. The SOM

describes the simulation (federates) in terms of the types of objects, attributes and interactions it

can offer to future simulations. A federation FOM is composed of parts of the SOM of all of its

participating federates. All the federation configuration information are stored in a standardized

format text file called the FED file [183, 184].

HLA provides a flexible control of time in an integrated simulation. In the HLA framework,

each federate must maintain a clock corresponding to the internal logical time of its simulation

which is distinct from any real-world clock. HLA provides numerous schemes for coordinating the

evolution of the logical clock among federates and can range from completely lacking time synchro-

nization, where one federate can execute arbitrarily far into the future, to completely synchronized,

where all federates evolve time within a tightly bound window. A federate can be configured to be

27

40

time-constrained or time-regulating, both, or neither [184]. A time-regulating federate’s progres-

sion constrains all time-constrained federates. Likewise, a time-constrained federate’s advance is

controlled by all time-regulating federates. A federate that is neither constrained or regulating is

free to evolve time on its own. The times of the federates that are both evolve in tight lockstep. If,

for example, all federates can run at least as fast as real-time, and one federate tightly correlates its

time advance requests to wall-clock time, then the entire federation can be made to run in real-time.

Otherwise, it is possible to execute simulations both faster and slower than real-time.

To operate in the HLA framework, each federate typically defines a step size, look-ahead interval

and minimum time stamp. When a federate requests to evolve its internal simulation time it does so

in increments of step size, which may vary in size from step to step. The look-ahead corresponds to

the amount of time into the future which the federate guarantees it will not issue an interaction or

object update and is generally small compared to step size. When the federate is in a Time Advance

Request (TAR) state, minimum time stamp is defined as the federate’s requested time plus look-

ahead. When the federate is in a Time Advance Granted (TAG) state, minimum time stamp is the

federate’s logical clock time plus look-ahead. Each federate maintains an understanding of all other

federates’ minimum time stamps. A similar protocol is supported for event driven simulation in

which the event driven simulation requests the next event from the RTI. The simulation logical time

is advanced either to the earliest available interaction or to the time stamp of the next event local to

the requesting simulation [184].

In the HLA framework, each of the simulation engine and models must be individually in-

tegrated at both the HLA API level and at overall simulation level in order to participate in the

federation. Although, HLA APIs provide run-time support, the integration of models in the en-

vironment is not addressed. Recent efforts in the Command and Control Wind Tunnel (C2WT)

project have been explored in order to address this challenge. The C2WT is a robust multi-model

simulation framework for integrating heterogeneous simulation components using the RTI within

the HLA platform [185, 186]. It captures not only the necessary interface specification for running

heterogeneous simulations over HLA, but also a variety of mechanisms for configuring, enhanc-

ing, and detailing the simulation execution. The C2WT framework uses the discrete event model

of computation as the common semantic framework for the precise integration of an extensible

range of simulation engines. Formal semantics of heterogeneous models are difficult to capture be-

28

41

cause the component models may be defined using dramatically different domain specific modeling

languages (DSMLs). To integrate the models, the C2WT uses meta-modeling and the meta pro-

grammable Model Integrated Computing (MIC) tool suite [187] for developing a Model Integration

Layer [186], which can be used to formally define the simulation semantics. The tool suite facili-

tates the generation of over-arching run-time software components and glue code necessary for the

execution of a HLA-based simulation.

2.3.4 Functional Mock-Up Interface (FMI) and Functional Mock-Up Unit (FMU)

The growing trend in system design involves collaborative efforts whereby different groups design

and test various components of a system independently and at the very end all the components

are then integrated to get the complete system. With this trend, there is a strong need for the ef-

fective exchange of models between the various groups to facilitate effective system development.

Additionally, tools used by each group might be different. Hence, there’s a strong need for tool

independent standards for model exchange as well as co-simulation in order to evaluate various

system properties. Recently, a standardization effort was started to facilitate co-simulation and in-

tegration of models into different simulation environments and execution of models on embedded

systems. The Functional Mock-Up Interface (FMI), first initiated by Daimler AG, is a tool indepen-

dent standard introduced for the exchange of dynamic models and for co-simulation. The primary

objective of the FMI is to support the exchange of models between suppliers and original equipment

manufacturers (OEMs) even if a large variety of different tools are used. FMI standard consists of

two main parts, FMI for Model Exchange and FMI for Co-Simulation [188].

1. FMI for Model Exchange: The main objective of FMI for Model Exchange is allow any

modeling tool to generate C code or binaries representing a model which can then be easily

integrated into another simulation environment.

2. FMI for Co-Simulation: This interface standard provides a solution for co-simulation of time

dependent coupled systems consisting of subsystems that are continuous in time (model com-

ponents that are described by differential equations) or discrete in time (model components

that are described by difference equations like, e.g. discrete controllers). The standard de-

fines interface routines for the communication between a master and the individual simulation

29

42

tools (slaves) in the co-simulation environment. The data exchange is restricted to discrete

communication points in time and the subsystems are solved independently between these

communication points.

The distribution of FMI is enabled by a component which implements the FMI called Functional

Mockup Unit (FMU). It consists of one zip-file with extension “.fmu” containing all the necessary

components to utilize the FMU. The included components consists of the following:

• XML-file: This file contains the definition of all variables of the FMU that are exposed to

the environment in which the FMU is used, as well as other model information. It is then

possible to run the FMU on a target system without unnecessary overhead. For FMI-for-Co-

Simulation, all information about the “slaves”, which is relevant for the communication in

the co-simulation environment is provided in a slave specific XML-file. This includes a set of

capability flags to characterize the ability of the slave to support advanced master algorithms,

e.g. the usage of variable communication step sizes, higher order signal extrapolation etc.

• C-functions: For the FMI-for-Model-Exchange case, all the needed model equations are pro-

vided with a small set of easy to use C-functions. These C-functions can either be provided in

source and/or binary form. Binary forms for different platforms can be included in the same

model zip-file. For the FMI-for-Co-Simulation case, a small set of easy to use C-functions are

provided in source and/or binary form to initiate a communication with a simulation tool, to

compute a communication time step, and to perform the data exchange at the communication

points.

• Additional data: Further data can be included in the FMU zip-file, especially a model icon

(bitmap file), documentation files, maps and tables needed by the model, and/or all object

libraries or DLLs that are utilized.

2.4 Dependability of Networked Control Systems

Parallel to the increased complexity of NCS, there is an increasing demand for dependable NCS

which has led to the emergence of research efforts in fault-tolerance control and monitoring sys-

tems in NCS. NCS depends strongly on the availability and correct functioning of both the control

30

43

system components as well as the communication network. The occurrence of a fault can trigger

a system failure that can possibly lead to catastrophic consequences. Hence, a critical issue in the

design of NCS is robustness or tolerance of the system with respect to faults including system com-

ponent failures as well as network failures. By network failure, we mean a total breakdown in the

communication between the control system components as a result of, for example, some physical

malfunction in the networking devices or severe overloading of the network resources that cause

a network shut down. Therefore, in the presence of faults in NCS, dependability becomes a very

important issue.

In this section, we provide a brief overview of dependability and a brief introduction to fault-

tolerant control. We then focus more on a form of reconfiguration in active fault-tolerance, analytical

redundancy, as it is most related to the proposed research.

2.4.1 Dependability

The concept of dependability of a system is defined as the quality of a system behavior as per-

ceived by another interacting system such that reliance can be justifiably placed on the system’s

behavior [189]. Based on the survey paper on the fundamental concepts of dependability in [190],

dependability consists of three parts:

1. The threats to the correct functioning of the system, such as faults, errors and failures.

2. The attributes encompassing dependability which include:

• availability, which indicates the readiness for correct system behavior.

• reliability, which means the continuity of correct system behavior.

• safety, which denotes the absence of catastrophic consequences on the users and the

environment.

• confidentiality, indicates absence of unauthorized disclosure of information.

• integrity, which represents the absence of improper system state.

• maintainability, which indicates the ability to undergo repais and modifications.

3. The means of achieving a dependable system include:

31

44

• fault prevention involves methods and how to prevent the occurence of faults.

• fault tolerance involves approaches on how to provide desirable system behavior in spite

of the occurence of faults.

• fault removal entails methods on how to minimize, through the process of verification

and validation, the presence of latent faults.

• fault forecasting involves techniques for estimating through thorough evaluation, the

presence, the creation and consequences of faults in a system.

Closely related to our proposed work is the use of fault-tolerance to ensure reliability of NCS in the

presence of faults. Along those lines, we introduce the notion of fault-tolearance.

2.4.2 Introduction to Fault-Tolerance

In a general sense, a fault is an event that changes the behavior of a system such that a system no

longer satisfies its objective or purpose. There exists numerous approaches of categorizing faults

based on the system. A detailed survey paper in [190], described six categories of faults namely:

phenomenological cause, intent, phase of creation or occurrence, domain, system boundaries and

persistence. The authors in [191] classified faults in a typical control system as follows:

• Component faults: These comprise of faults that change the dynamical input-output properties

of the system.

• Sensor faults: These faults occur when the sensor readings have substantial errors, but the

plant properties are not affected. Common types include bias, drifts and calibration errors of

sensors.

• Actuator faults: These faults occur when the influence of the controller on the plant is inter-

rupted or modified but the plant properties are not affected.

Faults in dynamical systems can, in general, be categorized using the criteria based on the nature

of the fault or the persistence of the fault as follows:

1. Nature of Fault: These include

• semantic or value fault occurs when an incorrect value is provided to a system.

32

45

• timing fault occurs when the value is presented outside the specified time interval.

2. Persistence of Fault: These include

• transient fault is a fault that exists only for a short period of time and disappears by

itself.

• permanent fault is a fault that exists until an explicit repair action takes place.

Based on the persistence classification of faults, the authors in [192] suggested that a lost mea-

surement can be treated as a transient fault in the sensor and a lost command can be treated as

a transient fault in the actuator. Thus disturbances/faults in the communication network can be

masked as disturbances/faults in the control system and therefore strategies in the Fault tolerant

control (FTC) field can be applied to NCS which can handle the above situations and allow the

evaluation of stability and performance of the control system.

Generally, in order to identify the faults of a system, a diagnosis component is necessary in

order to identify the source or cause of the fault. The development of diagnosis classes is done

by making use of previous experience, knowledge or information within an application area. The

necessary information used may come from several sources of knowledge, such as from system

analysis. [193] provides a survey on fault diagonsis, in particular for dynamical systems.

The general approach for making a system fault-tolerant consists of two steps:

1. Fault diagonsis: This step involves determining if a fault has occurred (fault detection), then

finding out where the fault has occured (fault isolation) and then figuring out the level or

impact of the fault (fault estimation).

2. Reconfiguration: This involves adapting the control system to the faulty situation so that the

overall system continues to satisfy its objective possibly with a possible decrease in perfor-

mance. Reconfiguration could involve closing the control loop via redundant signal path. The

redundant signal path can be an implicit property of the communication network employed

within the control system, and can be optimally exploited in the communication protocol.

These steps are typically designed in an integrated way, so that the reliability of the fault-tolerance

scheme is high.

33

46

2.4.3 Fault-Tolerance Control (FTC)

Fault-tolerant systems and associated control designs have inherently wide and diverse engineering

applications, and can be divided into four main categories as follows [194]

• safety-critical systems such as aircraft, helicopters, spacecraft and automobiles, nuclear power

and hazardous chemical plants;

• life-critical systems such as tele-robots for surgery, implanted heart monitors, nanoscale di-

agnostic instruments, digital protheses and other medical devices, as well as ground traffic

control and automated highway systems;

• mission-critical systems such as avionics and air traffic control systems, defense systems,

spacecraft and space stations, autonomous aerial/space/underwater vehicles, robots used in

industrial processes, and communication networks;

• cost-critical systems such as large-scale space structures, drive-by-wire automobiles, dis-

tributed process control, computing and communication networks.

FTC is a very active research area and describes techniques for adaptively adjusting control

loops to faulty plants. An FTC system has the property that faults do not develop into a failure of

the closed-loop system. The system is said to be fail-operational when it remains in operation after

the occurrence of a fault and its performance stays the same. When its performance decreases, the

system is called fail-graceful or fail-passive [195]. If a fault triggers a situation when cannot be

kept up, the system is brought into a safe state and switched off, this system is said to be a fail-safe

system.

FTC techniques can be divided into two main catergories, passive FTC and active FTC as shown

in Fig. 3 [195]

1. Passive FTC [195] In passive FTC, the conceivable system component failure is assumed

to be known a-priori, and the control system takes all failure modes into account in the de-

sign stage. Once the control system is designed it will remain fixed during the entire opera-

tion. Hence, passive FTC deals with a presumed set of system component failures which are

considered at the controller design stage. Robust control is a type of Passive FTC, used in

34

47

Figure 3: Classification of Fault-Tolerant Control

designing a controller to tolerate a set of possible faults. In this case, the control system is

considered to be robust because even in the event of component failures, the control system

should still be able to maintain the desired level of performance. However, the set of faults

that can be tolerated without active controller re-adjustment is usually limited. Also, for the

designed controller to maintain a certain level of performance under a wide range of failures,

the designed controller is typically conservative. The drawback of this approach is that one

has to ensure the control system works under all possible system operating scenarios and in

the presencce of an unaccounted failure nothing can be said about the behavior of the system.

Hence it is very difficult for a passive FTC to be optimal from a performance standpoint alone.

2. Active FTC [195] In contrast to passive FTC, active FTC represents techniques to achieve

fault tolerance by changing the control loop after a fault has occurred in order for the stability

and performance of the overall system to be maintained at an acceptable level. This approach

relies heavily on the ability to diagnose fault for the most update information about the system

and operating conditions of the components. The fault diagnosis step typically involves Fault

Detection and Isolation (FDI) which seeks to find out whether the system is subjected to

a fault and to identify the fault. The fault diagnosis step is then followed by a controller

adjustment step, called control reconfiguration. The main critical issue facing any active FTC

is the limited reaction time available to detect, diagnose and reconfigure control actions in

35

48

reaction to faults. The speed, accuracy and robustness of these operations are the main factors

to the success of any active FTC.

Active FTC can be categorized into Physical Redundancy and Analytic redundancy. Phys-

ical redundancy includes conventional fault-tolerant control systems that are achieved and

ensured through hardware redundancy, that is, by including redundant actuators and sensors

in the system. The control and measurement channels are generally made duplicated or trip-

licated in hardware. The main disadvantage of physical redundancy is the additional cost and

the corresponding increase in complexity of operation. Moreover, the weight of the system

and the maintenance requirements are subsequently increased. The two types of physical

redundancy are static redundancy and dynamic redundancy[196]. In static redundancy, typ-

ically three or more parallel modules are used that have the same input signal and are all

active. A voter compares their output signals and decides by majority which is the correct

one. In this scheme for example in a commonly used triple-redundant modular architecture

one fault can be masked without the use of special error detection methods. On the hand,

Dynamic redundancy requires fewer modules at the cost of more information processing. A

minimal configuration consists of two modules, where one module is in operation, and the

second module takes over in case of an error. When the second module is continuously oper-

ating this method is called hot standby, which has the advantage of shorter downtime of the

system. However since it is operating all the time aging of the module becomes a disadvan-

tage. This can be circumvented using a cold-standby configuration, where the backup system

is normally out of function and only becomes operational in case of an erroneous primary

system.

Contrary to the physical redundancy, Analytic redundancy is a technique that replaces the

hardware redundancy by a process model which is implemented in the software form and

hence sometimes referred to as software redundancy. The next section will provide a review

of analytic redundancy.

36

49

2.4.3.1 Analytic Redundancy

The concept of Analytic redundancy or so called model-based FTC refers to redundant components

in a system with different specifications, designs and implementations, but satisfaction of certain

requirements that are analytically related [197]. The first application of analytic redundancy for

software fault tolerance in control systems was introduced by [198]. In analytic redundancy, an

explicit mathematical model is used to perform two steps. The fault is diagnosed by using the

information included in the model and in the on-line measurements from the sensors. Then the

model is adapted to the faulty situation and the controller is re-designed so that the closed-loop

system including the faulty plant satisfies the given specifications. In this case, a model is essentially

a quantitative or a qualitative description of the system dynamic and steady behavior, which can be

obtained using well-established system modeling techniques. In this way, the system behavior can

be reconstructed on-line [199]. In other words, redundant system models will run in parallel to the

real process and it will be driven by the same inputs.

Analytic redundancy, making use of mathematical model of the system and relationships be-

tween sensor outputs and actuator inputs, has been proposed and are increasingly being employed

in complex control systems [200, 201]. A very well known form of analytic redundancy is the

Simplex Architechture introduced by Sha in [202, 203, 204], an architecture that provides safety

guarantees by “using simplicity to control complexity”.

2.4.3.2 Simplex Architecture

In [202, 203, 204], the original Simplex Architecture provides a fail-operational mechanism for a

malfunctioning software controller. The architecture permits online modification and upgrade to

control software without sacrificing safety. It involves a robust design where complex controller

faults can be detected and fixed during run-time without jeopardizing safety. The Simplex Archi-

tecture uses three subsystems: safety, complex, and decision. The safety subsystem has a simple,

reliable controller which provides verifiably safe performance and is used in case the complex con-

troller malfunctions. The complex subsystem drives the system during regular operation, as long

as it does not jeopardize system liveliness. This controller can be changed and upgraded while the

system is running and may even contain bugs (therefore it does not need to be verified, or may

37

50

even be too complex to fully verify). The decision subsystem chooses which of the two previously-

mentioned controllers to use.

The work in [202, 203, 204] developed the Application-Level Simplex Architecture which has

all three subsystems located at the application-level. This works well for protecting the system from

faults directly from complex controller, however it does not provide safety for indirect faults of

underlying components. For example, if the operating system which runs all three subsystems in

the Application-Level Simplex Architecture contains a bug and crashes, plant safety can no longer

be guaranteed. An extension to Application-Level Simplex Architecture was provided in [205]

which uses hardware/software codesign to also tolerate software faults in other dependent layers

such as microprocessor and operating system.

Another important software fault-tolerant approach is N-version programming [206]. In this

method, multiple versions of software are independently created from the same specification. Then,

all are run and the result given by the majority of versions is taken as the output of the system.

One drawback with this method is the lack of statistical independence of faults [207]. Additionally,

for a constant amount of development effort, N-version programming is actually less reliable than

focusing on a single version over a wide range of parameter values [204].

The recovery block approach is another approach similar to the simplex architecture [208].

In this approach, several alternative methods are developed. The first fully feature method is ran

first and checked for correctness, if it is, this method is used. Otherwise, a simpler method is

attempted. The clear difference between the recovery blocks and the Simplex Architecture is that

the the recovery block is a backward recovery method while the Simplex Architecture is more of a

forward recovery method.

2.4.4 Model-based Detection

Model-based detection has a long rich history finding immense application in fault diagnosis. A

survey of the various detection, isolation and recovery approaches is provided in [209]. In [210],

the authors survey various quantitative and qualitative model-based approach used in diagnosis. We

focus on the quantitative model-based approaches as it is directly related to the work presented in

this manuscript. In model-based detection, the underlying objective is the determine using a model

of system whether the system is exhibiting a nominal or abnormal behavior. The system model is

38

51

usually developed based on some fundamental understanding of physics of the system. The system’s

model can be an analytical model represented by a set of differential/difference equations or it could

also be a knowledge-based model represented by, for example, neural networks, fuzzy rules or

expert knowledge [211]. Based on the system model and corresponding inputs to the system, the

behavior of a system can thus be predicted online. The underlying idea then becomes to compare

the difference between the predicted and actual system behaviorsx. The differences in behavior

are typically known as residuals. The system is said to behave nominally if the residuals are within

predetermined or specified bounds and in the case when the residuals exceed the specified thresholds

the system is said to behave abnormally. The first step in model-based detection, which involves the

process of creating the residuals, is called residual generation. The second process in model-based

detection, which involves the extracting and evaluating information from the generated residuals, is

called residual evaluation. These two processes are at the core of model-based detection. Figure 4

Figure 4: Model-Based Detection Scheme

shows the typical model-based detection scheme, which is composed of the plant model, the residual

generation and residual evaluation components. In what follows we further describe the residual

generation and evaluation components along with the existing approaches in the area.

39

52

2.4.4.1 Residual Generation

Residual generation, shown in Figure 4, is particularly useful especially in the presence of model

uncertainties, measurement and process noise and unknown disturbances. The most frequently used

residual generation techniques are discussed as follows.

1. Observer-based residual generation: This is the most common type of residual generation

technique, and essentially involves the use of an observer or a bank of observers in order to

estimate the output of the monitored system, subsequently the estimate is compared to the

actual system output in order to obtain the residual [212]. The observer-based method is

applicable to wide range of systems including static systems, dynamic systems, stochastic

systems etc. Contrary to the classical observer used in the control community, observers used

in residual generation, typically referred to as diagnostic observers, are essentially output ob-

servers that estimate the measured states of the system. Notwithstanding, full state observers

are also used in residual generation and provides the additional degree of freedom which aids

in the isolation process [213].

2. Parity space based residual generation: In these approaches a parity relation is derived from

the system model. Parity equations are typically obtained by transforming or rearranging the

system’s input-output models. Using online system data these models are relatively easy to

generate and use. [214, 215]. The main objective is to check the consistency or parity of the

system model with measured outputs and known inputs. This approach was first proposed in

[214] for state space representation of a system and subsequently extended to system models

represented as transfer functions [216, 217]. The work in [218], showed that the parity space

approach results in certain types of observer structures. Due to this fact, even though the

design techniques are different, the parity approach is said to be structurally equivalent to the

observer-based approach.

3. Parameter identification: The foundation of the parameter identification based methods is

the on-line estimation of parameter(s). This approach requires accurate parametric model of

the monitored system [219]. The benefit of this approach lies in the fact that it yields the size

of deviation of parameter and this has be found to very useful in particular in the process of

40

53

analyzing faults. The main drawback of this approach is that in order for parameters to be

accurately estimated , sufficient excitation, which is not always available, is needed. [211].

Some of the existing parameter identification schemes, just to name a few, include techniques

based on least squares, recursive least squares, extended least squares etc.

2.4.4.2 Residual Evaluation

Residual evaluation, shown in Figure 4, is a very important component of the model-based detection

scheme. This component essentially decides whether or not an abnormal behavior is present based

on the obtained residuals. The evaluation schemes can be categorized into schemes for stochastic

and deterministic systems. For stochastic systems, the residuals can be evaluated using statistical

or stochastic properties such as mean, variance likelihood ratio (LR), generalized likelihood ratio

(GLR) [220], sequential probability ratio testing, CUSUM etc [209]. On the other hand, for de-

terministic systems, the residuals can be evaluated by comparing the norm of the residual signal

against predetermined threshold values. In these norm-based approach, various norms can be ap-

plied for exampleL2, peak and also root mean square (RMS) [218]. These norm-based approach not

only require less computation, in addition they also allow for a systematic approach for computing

threshold.

2.4.5 Energy-based Detection

Compared to observer-based detection, the use of system concepts such as passivity and/or energy in

model-based detection is not very common. There are only a handful of work whereby the concept

of energy is used in detection. In [221], the authors proposed a fault detection and isolation method

for port-Hamiltonian systems to detect variations in the parameters of system components. The

work in [222] proposed an energy balance scheme for fault detection for continuous-time passive

systems. The author performed fault detection by checking when the energy balance is perturbed

indicating the presence of faults. An energy balance fault detection approach was also applied for

sensor fault detection in steel galvanizing process[223]. In this work the authors developed a FDI

scheme to detect faults in single-input single-output closed-loop system without the requirement of

an accurate state or dynamic system model. In [224], a passivity-based fault detection method was

introduced based on evaluating the traditional passivity-based inequality. In this work, a fault is said

41

54

to have occurred whenever the inequality is not satisfied.

2.4.6 Security of NCS

Over the past few years, given the prevalent attacks on NCS infrastructure, the security of NCS has

received increased attention. With this increased attention, there has been numerous efforts towards

securing NCS. NCS are typically designed to achieve certain operational goals such as closed loop

stability, liveness or optimization of certain performance function. As described in [225], the main

objective of the recent efforts towards securing NCS is to protect these operational goals as well as

other non operational goals for e.g. privacy. Security goals can be generally described by; integrity

which represents the trustworthiness of data or resources, availability which means the ability to

access and use information on demand as specified; and confidentiality which is the ability to keep

information secret or private from unauthorized users. Unlike other IT systems where securing

against cyber attacks essentially involves encryption and protection of data, security of NCS is

more complicated considering that malicious attacks in these systems can potentially influence the

physical system’s behavior. In order words, merely applying IT security measures in NCS, would

not be enough to properly secure their correct operation against cyber attacks [226, 225].

The work in [227, 226, 225], discussed the fundamental vulnerabilities, threats and challenges

facing NCS as a result of their complex and typically distributed architectures arising from the inter-

connection of IT and control systems. Prevalent malicious attacks on NCS can be categorized into

denial-of-service (DoS) and integrity/deception attacks. The lack of the security goal of availability

results in a DoS attack while the lack of the security goal of trustworthiness results in integri-

ty/deception attacks These attacks are often considered intelligent being that they cannot be easily

detected by simple bad data detection (BDD) schemes which are typically applied to detect outliers

in measurement data based on a high fidelity model.

In [228], the authors presented a three-dimensional attack space linking different types of attacks

both in the cyber and physical layers of NCS to the attackers’ knowledge of the system as well as the

disruption and disclosure resources available to the attackers. This detailed view provides an insight

for both an attacker and defender on how an attack can be perpetuated as well as the potential impact

of the attack on a system. As an illustrative example, the authors used a quadruple tank process as

a testbed for staged cyber attacks in order to demonstrate different attack scenarios as captured by

42

55

the attack space.

In [229], the authors consider DoS attacks whereby an attacker, with constrained resources,

jams the communication channel. The formulation is proposed in a game theoretic framework. In

this approach the attacker/jammer, for a limited number of time slots can jam the communication

between the plant and the controller. A saddle-point equilibrium between the attacker and controller

is shown to exist for the dynamic zero-sum game and in addition, for a specific instance problem,

they proposed an optimal jamming policy which is proven to be of a threshold type. The authors

in [230], consider NCS with safety constraints under DoS attacks. In their model, they considered

the problem of finding an optimal feedback controller that minimizes a performance function in

order for safety and power specifications to be satisfied. They also presented the effects of attack

models on the solutions of the optimal control problem. In [231], the authors proposed two queuing

models to simulate the stochastic process of packet delay jitter and loss under DoS attacks. Using

these models, they quantitatively investigated the degradation of performance due to DoS attacks

and proposed mitigating techniques based on packet filtering.

Integrity attacks such as deception has received great attention. These type of attacks typically

involve the attacker accessing and modifying exchanged data in an effort to disrupt the nominal

operation of the system. In [232], the authors analyzed the effects of false data injection attacks

on control systems and provided necessary and sufficient conditions under which an attacker can

destabilize a system while remaining undetected. The same authors presented a specific class of

integrity or deception attacks called replay attacks in [233]. The replay attacks were demonstrated

on state estimation in wireless networks and then a novel detection scheme was developed in or-

der to handle such attacks. In [234], the authors consider false data injection attacks against state

estimation in electric power grids. The authors show that by using the configuration of the power

system, an attacker can launch successful attacks that introduce errors into certain state variables

while bypassing existing BDD. They also consider realistic attacks whereby the attacker resources

are constrained. In [235] the authors showed that the safety constraints of an automatic generation

control (AGC) for power system under deception attack could be violated. The authors showed

how to robustly interrupt the AGC signals and introduce an appropriate fake signal. In [236], the

author described and characterized scenarios demonstrating stealthy attack policies whereby an at-

tacker having detailed model knowledge and full access to all sensor and actuator channels is able to

43

56

perform both disclosure and deception attacks. Then using a water irrigation example, the stealthy

attack policies were illustrated.

The work in [237] describes a set of stealthy false-data injection attacks for omniscient attackers

with full-state information compromising a subset of existing sensors and actuators. Stealthy de-

ception attacks were also considered in networks distributively computing linear functions, where

each node is modeled as a first-order system [238, 239]. From a system theoretic standpoint the

stealthy deception attacks were characterized in terms of the number of compromised nodes and the

network connectivity. The works in [240] also analyzes fundamental conditions that guarantee re-

silience in presence of adversaries. In [241], the authors considers the secure estimation and control

of linear deterministic systems under malicious sensor attacks. The authors formulated the problem

as a dynamic error correction problem with sparse vectors and showed that by using state feedback

the resilience of a system can be increased.

In the security of NCS, the impact of an integrated security mechanism on the performance

of the NCS is often neglected. In fact, there exists trade-offs between security and performance

requirements due to the limited system resources and extra time delay imposed by the security

additions. In [242], the basis effect of security on NCS performance is characterized. Additionally,

the integrated security features are mapped to time delay in a system to show the trade-off between

adding security and real-time operation for an NCS path tracking application. Also, in [243] a model

for the trade-off is introduced and co-evolutionary algorithms are used to optimize this tradeoff.

From the aforementioned works, it is clear that in order to properly secure NCS, appropriate

tools and techniques are required in order to understand and subsequently protect NCS infrastructure

against malicious cyber attacks.

2.5 Applications

In this section, we review some representative applications. In particular, we briefly review two

types of robotic systems: robotic manipulators and wheeled mobile robots. We also provide a very

brief overview on automotive systems. These three applications embody the various challenges in

designing NCS, from understanding the physical equations governing the dynamics of these systems

as well as the emerging interactions due to the introduced communication networks and platforms,

to the design and implementation of control techniques to achieve various objectives. Also, these

44

57

applications present representative platforms to test various design approaches in order to validate

research findings.

2.5.1 Robotic Systems

2.5.1.1 Robotic Manipulators

Robotic manipulators are highly nonlinear and coupled dynamic systems typically designed to move

and maneuver objects within a given work environment using a number of actuated joints. A robotic

manipulator’s degree of freedom is equivalent to the number of joints (motors) and the type of joints

it has. Robotic manipulators have been extensively applied in factory automation, space exploration,

surgery, search and rescue missions, hazardous environment and other various military applications.

An n-degrees of freedom robotic manipulator can generally be described using the Euler-Lagrange

equations of motion as [19]:

B(q)q̈ + C(q, q̇)(q̇) + Fv(q̇) +G(q) = τ ; (1)

where q ∈ Rn denotes the vector of generalized coordinates (rotational joint configurations),B(q) ∈

Rn×n is the symmetric positive definite inertia matrix, C(q, q̇) ∈ Rn×n is the matrix of centrifugal

and Coriolis torques, Fv(q̇) ∈ Rn×n is the the diagonal matrix of the viscous friction coefficients,

G(q) ∈ Rn is the gravitational torque vector. τ(t) ∈ Rn is the input torque vector.

One fundamental objective that is necessary for the application of robotic manipulators in the

various applications mentioned earlier is trajectory tracking. Trajectory tracking control of a robotic

manipulator is the control of a robotic manipulator to follow a desired trajectory by the adjustment

of the manipulator’s joints. Trajectory tracking control of a robotic manipulator has attracted con-

siderable interest over the past years. Numerous design techniques have been developed to address

this problem. Traditional proportional-derivative (PD) controllers, have been shown to be simple

and effective for set-point tracking [244]. However, for the case of trajectory tracking, PD con-

trollers often require very large actuation to achieve precise control which is often not practical.

In [245], various extensions of the PD control approach have been developed to improve the trajec-

tory tracking ability of robotic manipulators.

In order to consider the impact of model uncertainties online parameter-estimation techniques

45

58

in the form of adaptive control techniques have been sought for trajectory tracking control of robotic

manipulators [246]. Robust controllers such as sliding mode, backstepping and passivity-based con-

trollers have also been proposed towards addressing the trajectory tracking problem in the control

of robotic manipulators. An exhaustive survey for these robust control approaches can be found

in [247, 248]. The difficulty often involved in determining the dynamic model of robotic manipula-

tors has resulted in the use of soft computing techniques in solving the trajectory tracking problem.

These techniques include soft computing methods such as fuzzy-logic control, neural networks and

genetic algorithms. The authors in [249, 250] provide a survey on the use of soft computing tech-

niques in robot control which have been shown to be quite effective especially without a-priori

knowledge of the system dynamics.

2.5.1.2 Wheeled Mobile Robots (WMRs)

Wheeled mobile robots (WMRs) represent another group of well-known robotic systems. Research

involving wheeled mobile robots have been an active area of research over the past few years. The

great interest in this area has been mainly fueled by the numerous practical applications that can be

uniquely addressed by mobile robots due to their ability to work autonomously in large potentially

unstructured and hazardous domains. A wheeled mobile robot is able to perceive its current con-

ditions and that of its environment through an array of sensors. These information aid the WMR

to autonomously navigate its environment with a set of motorized actuated wheels. WMRs have

been employed for applications including: security, military operations, surveillance, mining oper-

ations, planetary exploration and even household cleaning. In these applications, WMRs operate in

unknown environment where human intervention is expensive, monotonous, unreliable or impossi-

ble. Research in WMRs can in general be divided into several components namely, the modeling

of the WMR, the planning and navigation strategies, the communication system, control tasks and

localization techniques. We are particularly interested in the research efforts related to the control

of WMR and the communication system to exchange information between the WMR’s components

as well as with other WMRs. The control of WMRs involves understanding the physical mechanics

of the WMR platform, the model of the interaction between the WMR and it’s environment as well

as the impact of control algorithms on the WMR.

The control of WMRs to perform motion objectives is very important. The nonholonomic con-

46

59

straints associated with these systems have motivated research efforts towards techniques that ef-

fectively achieve the desired control objectives. Nonholonomic systems have motion limitations

resulting from their kinematic model. Therefore, some directions of motion are not possible. There

are many different types of WMRs. [251] provides structural properties of the kinematic and dy-

namics models of various types of wheeled robots. The authors then used the concepts of degree

of mobility and degree of steerability of WMR in order to classify them into respective groups. A

thorough analysis in regards to the classification is also provided.

The two most common types of WMRs are the unicycle-type WMRs and the car-like WMRs.

The unicycle-type WMR is typically composed of two independently actuated wheels on a common

axle whose direction is rigidly linked to the robot’s chasis, and one or several passively orientable -

or caster- wheels, which are not controlled. The car-like WMR is composed of a motorized wheeled

axle at the rear of the chasis and one(or a pair of) orientable front steering wheel(s). The motion

tasks of a WMR consists of three main generic control problems, path following, stabilization of

trajectories and stabilization of fixed postures [252]. In path following, based on a predetermined

velocity the problem involves driving on a road while trying to maintain the distance between the

WMR chassis and the side of the road constant. An example application is the automatic wall fol-

lowing. In stabilization of trajectories, unlike path following, the velocity is not predetermined and

the problem is typically formulated as the one of controlling the WMR to track a reference vehi-

cle whose trajectory is given by (xr(t), yr(t)). The stabilization of fixed posture involves correct

orientation of a WMR with respect to a desired reference posture.

There are numerous existing approaches for controlling WMRs to achieve motion tasks. In [253],

the authors proposed a nonlinear feedback action in order to address the trajectory tracking prob-

lem. [254] provided alternative solutions to trajectory tracking using dynamic state feedback lin-

earization. A recursive technique for trajectory tracking of nonholonomic systems in chained form

was proposed in [255] through the extension of the backstepping control paradigm. For posture

stabilization, both discontinuous and/or time-varying feedback controllers have been proposed.

Smooth time-varying stabilization was pioneered by Samson in [256] with application also to

the path following problem, while discontinuous (often time-varying) control have been proposed

in various forms in [257, 258, 259]. Additionally, many other control techniques have been pro-

posed in tackling the stabilization and path-tracking objectives such as model-based predictive con-

47

60

trollers [260], Lyapunov-based controllers [261] and fuzzy neural networks [262].

WMRs have also been used extensively in various multi-agent cooperative control objectives

such as flocking and platooning. The work in [46, 47, 263, 264] provides a review of multi-agent

cooperative control objectives involving WMRs.

2.5.2 Automotive Systems

Fueled by advent of digital technology over the last few years, a typical modern automotive vehicle

features the use of electronic systems to replace hydraulic and mechanical implementations of sys-

tem functionalities. The electronic systems in an automotive system can be grouped into two main

classes: the first category is the hard-real-time control of mechanical parts and the second category

is information-entertainment (typically known as infotainment). The first category includes chassis

control, automotive body(interior air conditioning, dashboard, power windows), powertrain(engine,

transmission, and emission control systems) and active safety control systems. The second category

includes information management, navigation, computing, external communication and entertain-

ment. These modern automotive systems are equipped with up to 80 electronic control units (ECUs)

exchanging more than 2500 signals over up to 5 different bus systems [265][266]. These ECUs con-

trol and monitor many of the aforementioned functionalities of a vehicle.

The development of control software implementing the aforementioned system functionalities

has become one of the greatest challenges in the automotive domain due to the increasing complex-

ity of automotive systems [267] and the increasing roles of control, computing and communications.

Several works such as in [268, 269, 270], have shed light on the increasing roles of control, comput-

ing and communication as well as the benefits and challenges that they present. The development of

control software involves understanding the dynamics of the vehicle with respect to the required sys-

tem functionality, designing the controller functionality to achieve the design specification, and the

testing, generation and deployment of the software components that implement the desired system

functionality.

An exorbitant amount of research effort has been devoted towards understanding the dynamics

of a vehicle in order to be able to design effective control techniques for various system functions.

The work in [271] provides a thorough analysis and review of the various dynamics of a vehicle,

especially the physical equations governing the main components of a vehicle including the tires,

48

61

engine, transmission, brakes and suspension etc and how they interactively result in vehicle motion.

The author also describes the performance of an automotive vehicle using basic foundation of engi-

neering principles and analytical methods. The work in [272] provides a more recent and updated

outlook on understanding the mechanics and dynamics of a vehicle. The author also provides a

comprehensive coverage of automotive control systems for various vehicle system functionalities

and describes various techniques in regards to the development of these control systems.

With the increasing complexity, high reliability and quality requirements, together with the

pressure for reduced cost and short time to market, the development of automotive control software

is typically based on the model-based approach together with platforms for testing. Model-based

software development approaches as well as the design of test-bed for testing automotive control

systems architecture is a very active research area and there’s an increasing amount of research ef-

forts in this area attempting to address various challenges highlighted in [273]. The authors in [274]

provided a survey on the area of model based development and testing focusing mostly on the main-

stream projects. Some research efforts in this area are devoted towards developing platforms for

testing such as in [275], an automotive test-bed for electronic controller unit testing and verifica-

tion. The authors in [276] presented a software-based implementation and verification scheme for

a FlexRay based automotive network. In [277], the authors used a technique called Instrumentation

Based Verification (IBV) to design automated tests in order to check whether models developed

in Matlab/Simulink satisfy specified requirements. The complexity and tight coupling between the

various layers of design in automotive systems pose great challenges to the model-based devel-

opment process. In other to tackle some of these challenges, various efforts have been devoted

to standardizing interfaces between the various layers of the automotive systems to enable easier

integration in the development of these systems.

In the effort towards standardization of automotive system components in order to reduce the

complexities involving in automotive control system development, initiatives such as AUTOSAR

have been established. Automotive Open System Architecture (AUTOSAR) initiative is a con-

sortium with the goal of an open standard for the automotive software architecture, through a

component-based architecture that can support the reuse and scalability of future automotive soft-

ware. Additionally, other standardization efforts are also being pursued for example in the case

of in-car communication network frameworks such as FlexRay and TTEthernet, with the goal of

49

62

guaranteeing highly reliable deterministic and fault-tolerant performance[278].

2.6 Comparison to this Dissertation

The presented work in this dissertation addresses specific problems in view of the four challenges

highlighted in Section 1.2. In particular, we seek to develop tools and techniques for the modeling,

design, analysis and evaluation of dependable NCS.

In regards to the challenge of modeling, design and analysis of NCS that are robust to network

effects, most of the works in the literature are faced with cumbersome models and in some case

oversimplified assumptions about the network due to the tight coupling of the NCS design layers.

In contrast, the main idea for our model-based approach for the design and analysis of NCS is that

by imposing passivity on the component dynamics we can ensure global system properties such

as stability. Additionally, the design becomes insensitive to network effects, thus decoupling the

controller design and implementation design layers with respect to network effects. This separation

of concerns empowers the model based design process to be used for networked control systems

without imposing additional constraints on the communication protocols.

Pertaining to the challenge of limited network resources, in most of the existing works, the

stability of the system is often directly tied to the sampling scheme. In contrast, we introduce a set of

passive components that allow variable sampling intervals in order to facilitate adaptive sampling.

These components generalize the use of any adaptive sampling scheme that generates sampling

intervals. Also due to the passivity of the components of the NCS, stability of the overall system

is guaranteed irrespective of the sampling scheme. Hence, our approach provides the benefits of

ensuring stability as well as the efficient use of network resources by the ability to incorporate an

adaptive sampling scheme in the passivity framework.

Further, our approach towards addressing the challenge pertaining to the evaluation of NCS is

different from other tools in multiple aspects. First, our integration of Matlab/Simulink and ns-2

for the simulation of NCS is based on the HLA framework. As described in Section 2.3.3.3, the

HLA is a standard for simulation interoperability that allows independently developed simulations,

each designed for a particular problem domain, to be combined into a larger and more complex

simulation. By using this framework, we address the correctness and validity concerns typically

posed by other tools for NCS. Secondly, our model-based approach provides a clear model of NCS

50

63

architecture and the information exchange between the control and networking subsystems of a NCS

through the tight integration of models in the respective subsystem. Such a design-time modeling

environment that supports NCS integration model is not available with existing tools. As a result, in

the existing tools, the interactions between the control and networking subsystems are described in

an ad-hoc manner, resulting in error-prone experiment execution. Finally, the design-time efficiency

and automatic code generation based on DSMLs is a strong feature of our tool.

Finally, our proposed attack detection scheme extends the energy-based detection schemes to

NCS in the presence of attacks. We generalize the energy-based formulation and characterization in

the presence of attacks for dissipative systems and in addition, we illustrate the characterization for

various passive systems, a special class of dissipative systems. Compared to most existing detection

schemes, the energy-based approach provides direct information about the stability guarantees of

the overall system other than just detecting the presence of an attack. Also, rather than focusing

on just the system output, our approach focuses more on the property of the system which provides

more valuable information about the system state.

51

64

CHAPTER 3

BACKGROUND ON DISSIPATIVITY AND PASSIVITY

The underlying foundations of the work presented in this thesis is deeply rooted in the concept of

passivity, a special case of dissipativity. Hence, it is important to provide some background on these

concepts. First, we introduce the concept of dissipativity and passivity. Subsequently, we present the

fundamental properties of passive systems. Next, we review the various interconnections of passive

systems. Further, we introduce the notion of passivity indices and various techniques for rendering a

certain class of non-passive systems passive. Finally, we introduce some passivity-related concepts

such as wave variable transformation, which are fundamental to the design of NCS.

3.1 Dissipativity and Passivity

Dissipativity and its special case, passivity, are mathematical abstractions describing the intuitive

physical concepts of power and energy conservation in the input-output behavior of a system [279,

280, 99]. The general notion of dissipativity originally emerged in the field of electrical circuit

theory, where it is noted that a network consisting of only inductors, resistors and capacitors, does

not generate energy [281]. The ability to study the behavior of a system in terms of energy functions

has an extraordinary value as it gives a physical and intuitive interpretation of important problems

such as system stability. This ability makes dissipativity and passivity very powerful and robust

tools for system analysis and control design [282, 283, 106]. As such, dissipative systems, as well

as passive systems, exhibit robustness to unmodeled disturbances and uncertainties including those

resulting from implementation and network effects. These desirable features also make dissipativity

and passivity well-suited for NCS applications.

3.2 Definitions of Passivity

Passivity can be mathematically defined using two main approaches (i) a state-space approach (ii) an

input-output operator-based approach. These two approaches are described briefly in the following

sections.

52

65

3.2.1 State-Space Approach

This approach is based on the energy-based behavior introduced by Willems [282, 284]. In this ap-

proach, a systematic framework is used to describe dissipativity and passivity in terms of inequalities

involving the existence of a storage function (energy stored by the system) and a supply function

(external received energy). The underlying relationship between dissipative and passive systems is

essentially the choice of a particular supply function. In order to proceed with the formal definitions

using this approach, we first provide the description of a dynamical system. Subsequently, we define

the supply rate of a system and then the description of dissipative and passive systems.

3.2.1.1 Continuous-Time Systems

First, we provide the following definition of a continuous time dynamical system.

Definition 3.1. [282] A dynamical system can be described by the following state space realization

Hc :

ẋ = f(x, u)

y = h(x, u)

(2)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rm are the state, input and output variables

respectively and X , U and Y are the state, input and output spaces respectively. For the purpose of

denotation, x(t) = ϕ(t, t0, x0, u) represents the state at time t reached from the initial state x0 at

t0.

The definition of a supply function is provided as follows.

Definition 3.2. [282] The supply rate W (t) = W (u(t), y(t)) is a real valued function defined on

U × Y , such that for any u ∈ U and x0 ∈ X and y(t) = h(ϕ(t, t0, x0, u)), W(t) satisfies

∫ t1

t0

|W (t)|dt <∞ (3)

Based on the above concepts, we can now provide a definition of a dissipative system.

Definition 3.3. [282] A dynamical system, Hc, is said to be dissipative with respect to the supply

rate W (t) if there exists a non-negative real function V : X 7→ R+, called the storage function,

53

66

such that for all t1 ≥ t0 ≥ 0, x0 ∈ X and u ∈ U ,

∫ t1

t0

W (t)dt ≥ V (x1)− V (x0) (4)

This inequality is called the dissipation inequality [285]. There are several interesting candidates

for the supply rate function but a particular candidate function which simplifies the extension of the

supply rate representation to passivity, is the QSR dissipativity supply rate. The QSR dissipativity

supply rate is described as follows:

Definition 3.4. [285, 282] Given constant matrices Q ∈ Rm×m, S ∈ Rm×m, R ∈ Rm×m with

Q and R symmetric, a dynamical system, Hc, is said to be QSR dissipative if it is dissipative with

respect to the supply rate, W(t), given as

W (u, y) = yTQy + 2yTSu+ uTRu (5)

From the QSR dissipativity definition in (3.4), we can now deduce special cases of QSR dissipative

systems which appear as a result of specific choices of the Q, S and R parameters: If the system,

Hc, is QSR-dissipative then it is

1. Passive if Q=0, S=1
2I , R = 0

2. Strictly input passive (SIP) if Q = 0, S = 1
2I , R = −δI

3. Strictly output passive (SOP) if Q = −ϵI , S=1
2I , R = 0

4. Very strictly passive (VSP) if Q=−ϵI , S = 0, R=−δI

5. Finite-gain stable (FGS) if Q=-I, S=0, R=γ2I

where ϵ and δ are positive scalars and γ is an arbitrary constant.

3.2.1.2 Discrete-Time Systems

We provide the following definition of a discrete-time dynamical system.

54

67

Definition 3.5. A discrete-time dynamical system can be described by the following state space

realization

Hd :

xk+1 = f(x(k), u(k))

y(k) = h(x(k), u(k))

(6)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rm are the state, input and output variables

respectively and X , U and Y are the state, input and output spaces respectively.

Definition 3.6. [286][287] A system, Hd, given by (6) is said to be dissipative with respect to

the supply function W (u(k), y(k)) if there exists a positive definite function V (x) or Vk, called

storage function, satisfying V (0) = 0 such that ∀x0 ∈ X , ∀k ≥ k0, and all u ∈ Rn and with,

Vk = 1
2x

T
k Pxk

Vk+1 − V0 ≤
N−1∑
k=0

W (u(k), y(k)) (7)

Definition 3.7. [288][289] A dynamic system, Hd, is said to be QSR-dissipative if it is dissipative

with respect to the supply rate,W given as

W (u, y) = yTQy + 2yTSu+ uTRu (8)

where Q,S,R are matrices of appropriate dimensions with Q and R symmetric.

Similar to its continuous counterpart in (5), by choosing different different values for Q, S and R

special cases of dissipativeness can be derived [290].

3.2.2 Input-Output Operator-based Approach

Typically referred to as “input-output passive mapping”, this approach is purely based on an input-

output representation of the system. In this case, the system is described like an operator that relates

the inputs with the output with no regards to the internal system structure [99, 291].

3.2.2.1 Continuous-Time Systems

First, we describe the L2-space as well as the extended L2e-space of functions and then we provide

the formal definitions for the main types of passivity. A signal y : R+ → Rm is in the L2-space of

55

68

functions if it has finite energy; i.e.,

∫ ∞

0
yT(t)y(t) <∞.

L2 includes only those functions that approach zero asymptotically. Due to this fact, we consider

the extended L2-space of functions, denoted L2e. For a signal to be in L2e, it must satisfy the

condition that any finite truncation of the signal has finite energy. This implies that L2e includes all

signals without finite escape time. Next, we provide a definition of an inner product as well as its

truncation.

Definition 3.8. [282] The inner product is defined as follows:

⟨u, y⟩ =
∫ ∞

0
uT(t)y(t)dt (9)

and in the case of a truncation, T ∈ R+ which nullifies function values larger than T , the resulting

inner product becomes

⟨u, y⟩T =

∫ T

0
uT(t)y(t)dt (10)

Also

⟨y, y⟩T =

∫ T

0
yT(t)y(t)dt = ∥(y)T ∥22 (11)

Using the above definitions, passivity is defined as follows:

Definition 3.9. [99] Let Hc : L
m
2e → Lm

2e. Then, for all u ∈ Lm
2e:

1. Hc is passive if there exist some constant β such that such that

⟨Hcu, u⟩T = ⟨y, u⟩T ≥ −β, ∀T ≥ 0; (12)

2. Hc is strictly output passive if there exist constants β and ϵ ≥ 0 such that

⟨Hcu, u⟩T = ⟨y, u⟩T ≥ ϵ∥(y)T ∥22 − β, ∀T ≥ 0; (13)

56

69

3. Hc is strictly input passive if there exist constants β and δ ≥ 0 such that

⟨Hcu, u⟩T = ⟨y, u⟩T ≥ δ∥(u)T ∥22 − β, ∀T ≥ 0; (14)

4. Hc is very strictly passive if there exist constants β and ϵ, δ ≥ 0 such that

⟨Hcu, u⟩T = ⟨y, u⟩T ≥ δ∥(u)T ∥22 + ϵ∥(y)T ∥−2 β, ∀T ≥ 0; (15)

5. Hc is finite-gain stable if there exist constants β and γ such that

⟨Hcu,Hcu⟩T = ⟨y, y⟩T ≤ γ2∥(u)T ∥22 − β, ∀T ≥ 0; (16)

3.2.2.2 Discrete-Time Systems

For the discrete time counterpart, we also describe the l2 space as well as the extended l2e space of

functions and then we proceed to the passivity definitions. A signal y : N+ → Nm is in the l2-space

of functions if it has finite energy; i.e.,

∞∑
k=0

yT(k)y(k) <∞.

Similar to the continuous time counterpart, let the extended l2-space of functions that map N+ to Nm

be denoted as lm2e. These signals are mapped onto lm2 by the N -truncation operator (·)N : lm2e → lm2 ,

which nullifies function values for indices larger than N − 1. Further, for all y, u ∈ lm2e define

⟨y, u⟩N ,
∑N−1

k=0 y
T(k)u(k) and ∥(y)N∥22 , ⟨y, y⟩N . The mapping Hd is a subset of lm2e × lm2e

which identifies the set of possible outputs in lm2e for each input u ∈ lm2e.

Definition 3.10. [292, 99, 279] Assuming all signals are assumed to be zero for all k < 0. Let

Hd ⊂ lm2e × lm2e. Then,

1. Hd is passive if there exists some constant β ∈ R (the bias) such that

⟨y, u⟩N ≥ −β, ∀N ∈ N; (17)

57

70

2. Hd is strictly output passive if there exists some constants β ∈ R and ϵ > 0 such that

⟨y, u⟩N ≥ ϵ∥(y)N∥22 − β, ∀N ∈ N. (18)

3. Hd is strictly input passive if there exists some constants β ∈ R and δ > 0 such that

⟨y, u⟩N ≥ δ∥(u)N∥22 − β, ∀N ∈ N. (19)

4. Hd is very strictly passive if there exists some constants β ∈ R and ϵ, δ > 0 such that

⟨y, u⟩N ≥ δ∥(u)N∥22 + ϵ∥(y)N∥22 − β, ∀N ∈ N. (20)

5. Hd is finite-gain stable if there exists some constants β ∈ R and γ such that

⟨y, u⟩N ≤ γ2∥(u)N∥22 − β, ∀N ∈ N. (21)

3.3 Passivity Properties

The vast applicability of passivity can be attributed to the highly desirable properties exhibited

by passive systems which in turn simplifies system design and analysis. Passivity is well-suited

for applications in linear or nonlinear, time-invariant or time varying, continuous or discrete time

and distributed systems. Even in the case when the physical meanings of the storage function and

supply rate are not explicit in describing passivity, abstract energy can be used in describing the

storage function and supply rate for a system. The following highlights the fundamental properties

of passive systems.

3.3.1 Stability

Generally, passivity is very useful in investigating stability of systems. Passivity of a system is

typically related to the system’s Lyapunov stability. Specifically, when a system is passive with

respect to a positive definite storage function, the origin of the system is considered stable. Hence,

in this case passivity is a sufficient condition for stability. On the other hand, if the associated

58

71

storage function is only semi-definite, additional conditions on zero-state detectability is required

to ensure stability of the system. The following is a characterization of the notion of zero-state

detectability [293].

Definition 3.11. A system is said to be zero-state detectable (ZSD) if for any x∈ X

y(t) = h(ϕ(t, t0, x0, 0), 0) = 0, ∀t ≥ t0 ≥ 0 =⇒ limx(t) = ϕ(t, t0, x0, 0) = 0 (22)

In a local sense, the system is said to be ZSD if there exists a neighborhood of X0 of 0 such that the

above equation holds for all x ∈ X0.

Hence, passive systems with only semi-definite storage functions with the additional condition

of zero-state detectability establishes the relationship between passivity and lyapunov stability.

The stability of passive systems can also be viewed from an input-output stability perspective,

without looking at the internal stability approach such as the Lyapunov approach [294]. In this

formulation, we can say that a system is stable if bounded input energy supplied to the system

results in a bounded output energy.

3.3.2 Phase-related Properties

Passive systems exhibit desirable phase-related properties. For continuous-time passive linear sys-

tems, in the frequency domain, their real parts are positive over all frequencies which implies that

they are are phase bounded. The phase shift for passive systems is always within [−90◦, 90◦][295].

For example, continuous-time system passive systems are minimum-phase and also possess low

relative degree, r < 2. In order to clearly understand these conditions we provide the definitions of

zero dynamics, minimum-phase and relative degree as follows:

(a) Zero-dynamics:

The concept of zero-dynamics is very important in the characterization of passive systems. The

definition of zero-dynamics is provided as follows:

Definition 3.12. [280] The zero-dynamics of a system are the state dynamics associated with

the output fixed at zero,

ẋ = f(x, u); 0 = h(x, u) (23)

59

72

(b) Minimum Phase:

For continuous-time linear systems, the minimum-phase property implies that there are no zeros

on the right-side of the complex plane. In the case of discrete-time systems, the minimum-

phase property implies that there are no zeros outside the unit circle. Minimum-has systems are

typically easy to control. The general definition of minimum-phase systems for both linear and

nonlinear systems is provided as follows:

Definition 3.13. [280] A system is minimum phase if its zero dynamics are Lyapunov stable in

a neighborhood around the origin.

On the other hand, non-minimum phase systems are more difficult to control and often charac-

terized as systems with unstable zero dynamics.

(c) Relative Degree:

The property of relative degree for both linear and nonlinear systems can be defined as follows

Definition 3.14. [280] The relative degree of a system is the number of times the output equation

must be differentiated before the input variables appear.

For LTI systems, the relative degree is characterized by the difference between the order of

the denominator and that of the numerator. While continuous-time LTI passive systems have a

relative degrees less than two, discrete-time passive systems have relative degree zero.

The properties of minimum-phase and relative degree of passive systems are important in char-

acterizing passive systems as well as in the passification of non-passive systems, which will be

discussed in the Section 3.5.

3.3.3 Kalman Yakubovich Popov (KYP) Property

The Kalman Yakubovich Popov (KYP) property is very important in the characterization of passiv-

ity. The KYP property provides a set of necessary and sufficient conditions for a system to meet

in order to be passive. KYP property provides more information than just the stability of passive

system. It defines the input-output property of the system by relating the inputs and outputs to the

states via the storage function. For linear systems, the KYP property establishes the equivalence

60

73

between the frequency domain characteristics and state space properties of passive and dissipative

systems by means of the positive real transfer functions.

1. Continuous-Time Systems

The positive realness of a system emerged from the network theory and was described in

frequency domain based on the fact that the time integral of energy input to a passive network

must be positive. Positive real systems are defined as follows:

Definition 3.15. A system is said to be positive real if for all u∈ U, t1 ≥ t0 ≥ 0

∫ t1

t0

yT(t)u(t) ≥ 0 (24)

whenever x(t0)=0 with the integral considered along the system trajectories.

Before, presenting the KYP lemma we define the notion of a system being minimal.

Definition 3.16. A continuous-time LTI system is minimal if it is both controllable and ob-

servable.

The KYP lemma is then provided as follows

Theorem 3.17. [280] Let the system, H , be a minimal realization where A is Hurwitz, (A,B)

controllable and (A,C) observable. If there exists a real symmetric positive definite matrix P

and real matrices W and L satisfying

PA+ATP = −LTL (25)

PB = CT − LW (26)

W TW = DT +D (27)

regarded as the passivity conditions, then the transfer function H(s) = C(sI −A)−1B +D

is positive real, that is it satisfies the following conditions

(a) all elements of H(s) are analytic for Re(s)>0,

(b) H(jw)+HT (-jw)≥ 0 ∀ w ∈ R, for which s=jw is not a pole of any element of H(s), and

61

74

(c) the eigenvalues of A on the imaginary axis are simple and the corresponding residues

lim(s− s0)H(s) (28)

(s0 a pole of H(s)) are Hermitian and non-negative definite matrices.

Conversely if H(s) is positive real, then for any minimal realization of H(s), there exists P>0,

W and L which satisfy the passivity conditions

The above definition can be equivalently represented in terms of linear matrix inequalities.

From the above theorem, finding a P = P T ≥ 0 in Theorem 3.17 is equivalent to finding a

P that is feasible for the following LMI constraints. Assuming a quadratic storage function,

V = 1
2x

TPx Linear Matrix Inequality (LMI) constraints [296].

 ATP − PA− Q̂ PB − Ŝ

(PB − Ŝ)T −R̂

 6 0

where Q̂ = CTQC, Ŝ = CTS + CTQD

R̂ = DTQD + (DTS + STD) +R

∃ε > 0, Q = −εI, R = 0, S =
1

2
I

(29)

The KYP property can also be extended to nonlinear systems. Consider the following nonlin-

ear system affine in the input

H :

ẋ = f(x(t)) + g(x(t))u(t)

y = h(x(t))

(30)

where x(t) ∈ (R)n. Also f, g and h are smooth functions of x.

Then the KYP lemma for the nonlinear system is defined as follows

62

75

Definition 3.18. [297] Consider the nonlinear system (30). The following statements are

equivalent.

(1) There exists a C1 storage function V (x) ≥ 0, V (0) = 0 and a function S(x) ≥ 0 such

that for all t ≥ 0:

V (x(t))V (x(0)) =

∫ t1

t0

yT (s)u(s)ds−
∫ t1

t0

S(x(s))ds (31)

The system is strictly passive for S(x) > 0, passive for S(x) ≥ 0 and lossless for S(x)=0.

(2) There exists a C1 non-negative function V : X 7→ R with V (0) = 0, such that

LfV (x) ≤ S(x)

LgV (x) = hT (x)

(32)

where LgV (x) = ∂V (x)
∂x g(x).

2. Discrete-time Systems

In discrete-time, the KYP property of a linear system is described by the following theorem:

Theorem 3.19. [298] Let H(z) be a square matrix of real rational functions of z with no poles

in |z| >1 and simple poles only on |z| ≤ 1, and let (A,B,C,D) be a minimal realization of

H(z). If there exists a real symmetric positive definite matrix P and real matrices L and W

such that

ATPA− P = −LTL (33)

ATPB = CT − LW (34)

W TW = (D +DT)−BTPB (35)

then, the transfer function H(z) is discrete positive real, that is, satisfies the conditions

(a) H(z) has elements analytic in |z| >1, and

(b) G∗(z)+G(z)≥ 0 ∈ |z| >1, the asterisk denotes complex conjugation.

Conversely if H(z) is discrete positive real, then for any minimal realization of H(z), there

63

76

exists P>0, W and L which satisfy the passivity conditions above. This lemma is also re-

garded as the discrete positive real lemma. A generalization of the discrete time positve real

lemma or KYP lemma which includes the general notion of dissipative systems is called the

Generalized positive real lemma and is defined as follows.

Lemma 3.20. [290][Generalized Positive Real Lemma] Let G(z) be a transfer function

description and M(z) = R+GH(z)S+STG(z)+GH(z)QG(z), with GH(z) denoting the

hermitian transpose of G(z). Let H be a minimal realization of G(z). Then ∀z s.t. ∥z∥ ≥ 1,

M(z) ≥ 0 if and only if there exist a real symmetric positive definite matrix P and real

matrices L and W such that

ATPA− P = CTQC − LTL (36)

ATPB = CTQD + CTS − LW (37)

BTPB = R+DTS + STD +DTQD + CTS −W TW (38)

The above lemma can also be equivalently represented in the form of LMIs. Assuming a

quadratic storage function V = 1
2x

TPx

 ATPA− P − Q̂ ATPB − Ŝ

(BTPA− Ŝ)T −R̂

 6 0

where Q̂ = CTQC, Ŝ = CTS + CTQD

R̂ = DTQD + (DTS + STD) +R

(39)

3.4 Interconnection of Passive Systems

The compositionality of passive systems refers to the ability of constructing large-scale systems

that preserve passivity through the interconnection of other passive systems by following simple

interconnection rules [299, 280, 293]. These passivity-preserving interconnection rules include the

64

77

parallel interconnection, feedback interconnection and symmetric input-output transformation of

passive systems and are illustrated in following:

3.4.1 Parallel Interconnection

The interconnection of two passive systems, A and B in a parallel configuration as shown in Fig-

ure 5, results in the system, H , with input u = u1 = u2 and output y = y1 + y2, that is equally

passive from u to y [300].

Figure 5: Parallel Interconnection of Passive Systems.

3.4.2 Feedback Interconnection

The feedback interconnection of passive is regarded as the most important passivity result and has

been used extensively in numerous applications [293]. The feedback interconnection of two passive

systems, A and B as shown in Figure 6, results in a system, H , with input and output, u = u1 + y2

and y = y1 respectively, that is equally passive from u to y.

3.4.3 Symmetric Input-Output Transformation

A system composition where by the inputs of a passive system is pre-multiplied by a matrix and the

output of the systems is post-multiplied by the transpose of the same matrix as shown in Figure 7,

also preserves passivity [279]. Hence, the resulting system, H is passive from u to y.

65

78

Figure 6: Feedback Interconnection of Passive Systems.

Figure 7: Pre- and Post- Multiplication of a Passive System.

These compositional rules form the basis for most of passivity-based control design techniques

existing in the literature.

3.5 Passivity Indices and Passification

3.5.1 Passivity Indices

The concept of passivity index, which was first introduced by [301], quantifies the degree of passiv-

ity and is used to measure how far a system is from being passive. Passivity indices can be defined

in terms of an excess or shortage of passivity. There are two main passivity indices that are used to

66

79

measure the level of passivity of a given system, the input feedforward passivity (IFP) and output

feedback passivity (OFP) [295] as shown in Figures 8 and 9 respectively. These passivity indices

are defined such that a positive value for an index corresponds to an excess of that form of passivity

while a negative value for an index indicates a shortage. Systems that are passive have positive or

zero values for both indices.

Figure 8: Input Feedforward Passivity

Figure 9: Output Feedback Passivity

3.5.1.1 Input Feedforward Passivity Index

The input feedforward passivity index (IFP) measures the extent of the minimum phase property

of a system. It represents the largest gain that can be put in a negative parallel connection with a

system such that the interconnected system is passive.

Definition 3.21. [300] A continuous-time system, Hc : u 7→ y, has input feedforward passivity

67

80

(IFP) index, ν, if the following inequality holds ∀t

∫ T

0
uT ydt ≥ S(x(T))− S(x(0)) + ν

∫ T

0
uTudt (40)

Definition 3.22. [300] A discrete-time system, Hd : u 7→ y, has input feedforward passivity (IFP)

index, ν, if the following inequality holds ∀t

N∑
i=0

uT y ≥ S(x(i+ 1))− S(x0) + ν
N∑
i=0

uTu (41)

3.5.1.2 Output Feedback Passivity Index

The output feedback passivity (OFP) index is a measure of the level of stability of a system. The

physical significance of this index is that it is the largest gain that can be placed in positive feedback

with a system such that the interconnected system is passive. A positive value for the OFP is also a

measure of the L2 gain of a system which is computed in terms of the index value as γ = 1
ρ [99].

Definition 3.23. [300] A continuous-time system,Hc : u 7→ y, has output feedback passivity (OFP)

index ρ if the following inequality holds ∀t

∫ T

0
uT ydt ≥ S(x(T))− S(x(0)) + ρ

∫ T

0
yT ydt (42)

Definition 3.24. [300] A discrete-time system, Hd : u 7→ y has output feedback passivity (OFP)

index ρ if the following inequality holds ∀t

N∑
i=0

uT y ≥ S(x(i+ 1))− S(x(0)) + ρ

N∑
i=0

yT y (43)

In other to characterize the passivity level of a system, both indices are necessary. Based on the

two indices, a system’s index can be denoted as (ρ, ν). The IFP and OFP indices are independent of

each other and hence knowing one of the indices does not provide any information about the other

except that the other index must exist. From the above definitions of passivity indices, it can be

seen that a positive value of ρ implies strictly output passive as described in Section 3.2, while a

positive value of ν implies strictly input passive. Additionally, these indices play an important role

68

81

in rendering non-passive systems passive as will be illustrated in Section 3.5.2.

3.5.1.3 Computing Passivity Indices for Linear Systems

The passivity indices for linear system can be explicitly calculated based on the well known KYP

lemma.

(i) Continuous-time Systems

For a continuous-time linear system, Hc, the two indices, if they exist, can be computed as

follows [295]:

(a) IFP Index: For a stable linear system Hc(s), the IFP index is given by the following

frequency-dependent function

ν(Hc(s), w) =
1

2
λmin[Hc(jw) +Hc(jw)

∗] (44)

where λmin represents the minimum eigenvalue.

(b) OFP Index: For a minimum phase linear system Hc(s), the OFP index is given by the

following frequency-dependent function

ρ(Hc(s), w) =
1

2
λmin[H

−1
c (jw) +H−1

c (jw)∗] (45)

where λmin represents the minimum eigenvalue.

(ii) Discrete-time Systems

For a discrete-time linear system, Hd, the two indices, if they exist, can be computed as fol-

lows [302]:

(a) IFP Index: For a stable linear system, Hd(z), the IFP index is given by the following

frequency-dependent function

ν(Hd(z), θ) =
1

2
λmin[Hd(e

jθ) +Hd(e
jθ)∗] (46)

where λmin represents the minimum eigenvalue.

69

82

(b) OFP Index: For a minimum phase linear system Hd(z), the OFP index is given by the

following frequency-dependent function

ρ(Hd(z), θ) =
1

2
λmin[H

−1
d (ejθ) +H−1

d (ejθ)∗] (47)

where λmin represents the minimum eigenvalue and 0 ≤ θ ≤ π.

3.5.2 Passification

In most cases, passivity-based techniques cannot be directly applied to systems which are not nat-

urally or inherently passive. Under certain conditions, some of these non-passive systems can be

rendered passive by compensating for their shortage of passivity. The approach of rendering a non-

passive system passive is termed passification. Due to the benefits of passivity-based control, there

are numerous efforts related to techniques in rendering systems passive. Based on the passivity

indices described in Section 3.5.1, loop transformations, can be used for passification. A system

that lacks OFP is unstable and can be made passive by using a negative feedback if the system is

minimum phase and has low relative degree. Additionally, a system that lacks IFP is non-minimum

phase and can be made passive with positive feedforward if the system is stable. For certain systems,

such as a system that is unstable and non-minimum phase a combination of the loop transformation

of feedback and feedforward gains cannot render the system passive and for this case the indices do

not exist for this system[300].

In [303], the authors rendered a non-passive system passive by applying a state-feedback func-

tion as a passifying input to the system. [304, 305] describe the use of output feedback in order to

render non-passive system passive. In [306, 307], the authors presented four passification techniques

for linear systems by using four different compensators: feedback, series, hybrid and feedfoward

compensators depending on the specific properties of the non-passive system.

3.6 Wave Variable Transformation

A very important tool that is typically associated with passivity, in particular during the exchange

of information between systems is the wave variable formalism. The wave variable transformation

originated from the scattering transformation in [23]. The scattering transformation defines a signal

70

83

representation which is invariant to translations and potentially to other groups of transformations

such as rotations or scaling. The fundamental idea behind the wave variable formalism is to trans-

form two variables of the same dimension, often the input and output variables of a system, so that

the resulting variables are linear combinations of the original variables. In wave variable trans-

formation as shown in Figure 10, variables are transformed into transmitted and reflected waves,

and thus are called wave variables. The equations, (48) and (49), denotes the relationship between

the wave variables (u,v) and the actual system variables (e,f). Wave variable transformation has an

underlying powerful intuition when the input and output variables of a system are power variables

represented as effort and flow variables such as force and velocity. In this case, the physical unit of

the square of each wave variable is Watts, and the direction of transmission of each wave variable

represents power flow [308].

Figure 10: Wave Variable Transformation.

u =
1√
2b

(f + be) (48)

v =
1√
2b

(f − be) (49)

Then, the difference of the transmitted and reflected waves is the net power flow. In the case where

the physical units do not admit this interpretation of power flow, the notion of abstract power flow

allows the intuition to be generalized. Wave variables are very beneficial because the energy of

transmitted waves are conserved when delayed by a constant value and provide robustness to delays.

This desirable property makes wave variables well-suited for NCS applications, where undesirable

network effects such as delays and packet loss adversely affect the overall system behavior.

71

84

CHAPTER 4

MODEL-BASED DESIGN OF PASSIVITY-BASED NCS

4.1 Introduction

Model-driven development has been found to be very beneficial in the systematic design and anal-

ysis of complex systems. Model-based design for embedded control systems involves creating

models and checking correctness at different stages in the development process [160]. The typi-

cal design flow progresses along precisely defined abstraction layers, typically starting with control

design followed by system-level design for the specification of platform details, code organization,

and deployment details, and the final stage of integration and testing on the deployed system. The

complexity and heterogeneity due to the introduction of NCS architectures make it extremely chal-

lenging to use these existing model-based design approaches to effectively construct CPS. The tight

coupling between design concerns create a number of challenges. Ensuring controller stability and

performance for physical systems in the presence of network uncertainties (e.g. time delay, packet

loss) couples the control and system-level design layers making it difficult to guarantee system prop-

erties. In addition, downstream code modifications during testing and debugging invalidate results

from earlier design-time analysis and any component change often results in “restarting” the design

process.

In an effort towards addressing these complexity and heterogeneity challenges in the design of

NCS, we propose an automated model-based approach based on the system theoretic concept of

passivity. The primary idea is that by imposing passivity constraints on the control design, which

in effect decouples the control design from network uncertainties such as time delays and packet

loss, we provide a simplification strategy that limits the complexity of interactions and empowers

the use of model-based approaches. Our main goal is to used the principle of decoupling to demon-

strate a model-based compositional framework for NCS. Using Model-Integrated Computing [160],

we developed a domain specific modeling language (DSML) called the Passive Networked Control

Systems (PaNeCS). PaNeCS raises the level of abstraction of NCS design and allows automated

analysis, code generation, system configuration, deployment, and testing. More importantly, it fa-

72

85

cilitates effective engineering processes and methods for designing, building, and analyzing NCS

by utilizing the compositionality across the design views stemming from the underlying passivity

principles. The underlying passivity principles provides robustness to network delays and packet

loss. Also, PaNeCS facilitates the rapid prototyping of networked control systems and enables test-

ing, through running different experiments under various network conditions, simply by adjusting

parameters and generating appropriate software for each configuration.

The main contribution of PaNeCS is that we developed a DSML for the compositional design

of passivity-based NCS that are robust to network uncertainties such as time delays and packet loss.

We integrated a component passivity analysis tool, which together with the encoded compositional

rules in the language ensures a “correct-by-construction” NCS design. We also integrated model

interpreters for transforming designed PaNeCS model into platform-specific models for simulations

using Matlab/Simulink/TrueTime. Also, we developed a code generator for generating executables

for implementing experiments for Euler-Lagrangian systems, specifically, networked multi-robot

systems. Finally, we provide simulation and experimental results demonstrating the effectiveness of

the approach and the robustness of the passivity-based approach.

The rest of the chapter is organized as follows: We briefly discuss a passive networked control

architecture in Section 4.2. Section 4.3 presents an overview of PaNeCS. Section 4.4 presents the

modeling language. Section 4.5 discusses an integrated analysis tool for automatically checking

passivity of modeled components. Section 4.6 presents the model interpreters for the automated

code generation of models for simulations as well as for experiments. Section 4.7 presents a simu-

lation case study on the control of two linear plants over a wireless network. Section 4.8 presents

an experimental case study on the control of a networked multi-robot system. Finally, a summary

of the chapter is provided in Section 4.9.

4.2 Passivity-Based Control of Networked Control Systems

We briefly discuss the passivity based control architecture for multiple plants controlled by a single

controller or multiple controllers via a network [309]. Figure 11 depicts a simple networked control

system with only one plant shown. The wave transform block, denoted b, represents a transforma-

tion between signals and wave variables. In Figure 11, upk(i) (where k=2,...,n), can be thought of

as sensor output data in wave variable form from each plant, where n − 1 is the total number of

73

86

plants in the network. Likewise, vcj(i) (where j=1) can be thought of as a command output in wave

variable form from the controller.

Figure 11: Networked Control Architecture

The power junction, denoted PJ in Figure 11, is used to interconnect wave variables from mul-

tiple controllers and multiple plants in parallel such that the total input power is always greater

than or equal to the total output power. This provides a formal way to construct a NCS design. A

power junction makes it possible for a single controller to control multiple plants over a network

and guarantee that the overall system remains stable. In Figure 11, the power junction has waves

entering and leaving as indicated by the arrows. The blocks, z−ck and z−pk (k=1,2), represent net-

work delays incurred by the wave variables. Waves entering the power junction from the controller

are network-delayed versions of waves leaving the controller, as indicated by the time delay block.

Waves entering the controller are delayed versions of waves leaving the power junction. The other

waves in the diagram are similarly delayed.

Due to bandwidth constraints, the controller typically runs at a slower rate than the sensors

and actuators of the plants. In order to preserve passivity in the multi-rate digital control network

we use the passive upsampler PUS:M and passive downsampler PDS:M pair to handle the data rate

transitions. The PUS:M and PDS:M as shown in Figure 11 provide the upsampled and downsampled

versions of their respective wave variable inputs while preserving passivity. The block parameter

74

87

M is the sampling ratio – the data rate of the faster side of the connection divided by the data rate

on the slow side. Based on the architecture described in Figure 11, we can now describe our the

modeling language, PaNeCS.

In [309, 6], the presented analytical results for the architecture in Figure 11 ensures passivity of

the power junction, and if the the plants and controllers are passive, the overall NCS is guaranteed

to be passive. Also, if the plants and controllers are strictly-output passive, the overall network is

l2-stable, a stronger robustness property than just being passive.

4.3 Overview of PaNeCS

The passivity-based modeling language, PaNeCS, is developed using the Generic Modeling Envi-

ronment (GME), from the Model Integrated Computing (MIC) tool suite [310]. GME provides a

metamodeling environment similar to UML. The class stereotypes are briefly defined as follows:

Models are entities which may contain other objects while Atoms are indivisible entities which

cannot contain other objects; Connections are association classes used to describe the relationship

between two entities and they represent a line that connects two entities of a model. Connectors

signified by ”.” specify a visualization for a connection in the model. Each of the entities associated

with the connector have well defined roles (src and dst) with respect to the connector. These roles

define the direction of the connection between the entities.

PaNeCS encodes passivity constraints into the language’s structural semantics in order to achieve

passive compositional design of NCS. Figure 12 shows the design flow in PaNeCS. PaNeCS sup-

ports the modeling of NCS composed of both linear and nonlinear dynamical plant systems. The

integrated analysis tool in PaNeCS, denoted as Passivity Analysis in Figure 12 enables the verifi-

cation of passivity for linear plants and controller specified as model components in PaNeCS. After

modeling NCS in PaNeCS and verifying that the specified components satisfy passivity, simulation

code for simulation of the NCS can be automatically generated for evaluation as denoted by the

block PaNeCS to Simulink/TT in Figure 12. Also, as depicted by the block, PaNeCS to Executa-

bles, in Figure 12, executables for experimental evaluation of modeled NCS can be automatically

generated. In the following sections, based on the components of the design flow as shown in

Figure 12, we will describe the modeling, analysis and code generation in PaNeCS.

75

88

Figure 12: PaNeCS Design Flow

4.4 Modeling in PaNeCs

4.4.1 Components

In PaNeCS, the language top level consists of eight main components: the PlantSystem, Physi-

calPlant, ControllerSystem, PowerJunction, PhysicalReference, ReferenceSystem, Processor, and

Network.

(i) Plant System: PaNeCS can model two types of dynamical plant systems, linear systems and

non-linear systems

(a) Linear Systems: In modeling a linear plant, PlantSystem represents all the sub-components

on the plant side of the network. These components include Plant, BilinearTransformP,

PassiveUpSampler, PassiveDownSampler, Send and Receive. Plant represents the system

to be controlled. The Plant model can be any passive discrete linear time-invariant (LTI)

76

89

system, H,

H :

xk+1 = Axk +Buk

yk = Cxk +Duk

(50)

where xk ∈ X represents the state variables, uk ∈ U represents the control inputs to the

plant and yk ∈ Y represents the plant outputs obtained by sensors at sampling instant

k ∈ Z.

The Plant dynamics are parametrized by matrix attributes A, B, C, D, and a scalar Sam-

plingTime, and are specified using any valid Matlab expression evaluating to the proper

dimensions. BilinearTransformP, parametrized by impedance b, represents a model for

wave scattering, which transforms the wave variables received from the power junction

into control input to the plant and transforms the plant output signal into wave variables

that are transmitted over the network. PassiveUpSampler and PassiveDownSampler pair

represent the PUS:M and PDS:M pair discussed in Section 4.2. Send and Receive pair are

used to represent the transmission of data over the network. Figure 13 shows a part of the

PaNeCS metamodel that describes the plant subsystem.

Figure 13: PlantSystem Sub-Language (Linear)

(b) Non-linear Systems: Figure 14 shows the parts of the metamodel that describe the PlantSys-

77

90

tem when modeling non-linear systems such as a robotic manipulator. RobotInterface de-

picts the software interface for connecting to the PhysicalPlant(an actual robotic system).

Local Controller represents the software component for implementing the local control

commands that are sent to the robot and also for processing the sensor data received from

the robot. The Local Controller is parametrized by the initial state of the robot, q0, the po-

sition loop gain, Kx, the velocity loop gain, Kv and the time constant, τ . These attributes

are used for configuring the passive controller for the robot. Figure 15 shows the language

of the Ports of the PlantSystem. The Send and Receive blocks indicate the ports for send-

ing and receiving wave variables from the power junction respectively. The two blocks

are both parametrized by the port number parameter denoted as PortNo. Additionally, the

Receive block has a parameter, VectorLength, which specifies the length of the vector of

the data that is received.

Figure 14: PlantSystem Sub-Language (Non-Linear)

(ii) Controller System: The ControllerSystem component models all the sub-components on the

controller side of the network. For controlling a linear plant, these include DigitalController,

BilinearTransformC, ZeroOrderHold, ReferenceInput, Send and Receive. DigitalController is

a model representing the algorithm for controlling the networked plants. Similar to the linear

model of the plant in PlantSystem, the DigitalController is modeled as an LTI system. There-

fore, the DigitalController parameters have similar attributes to the Plant for the LTI system

case. BilinearTransformC is similar to the BilinearTransformP described in the PlantSystem.

ZeroOrderHold represents a component that holds its input for the time period specified in

78

91

Figure 15: PlantSystem Ports Sub-Language

the sampling time attribute. ReferenceInput represents the desired signal to be tracked by the

plants. Similar to the PlantSystem, Send and Receive pair are used to represent the transmis-

sion of data over the network.

For the nonlinear plant models, Figure 17 shows the parts of the metamodel which describe

the ControllerSystem. In this case, the Digital Controller is parametrized by the control gain

parameter, K and the control design frequency, w, the cutoff frequency, wn and the damping

coefficient, ζ for the filter used in smoothing out the reference trajectory. Additionally, in the

ControllerSystem, a Receive block also indicates a port for receiving reference signals.

(iii) Power Junction: Figure 18 denotes the PowerJunction component of PaNeCS. The Power-

Junction models components for implementing the interconnections of plants and controllers.

The PowerJunction can two types of entities representing the two possible interconnection to

the PowerJunction, the PowerInputPowerOutput and the PowerOutputPowerInput. The Pow-

erInputPowerOutput entity models the software component for interconnecting plants and the

power junction. Through this power port entity, the PowerJunction sends calculated wave

transformed control signals to the PlantSystem and also receives wave transformed sensor

signals from the PlantSystem. The PowerOutputPowerInput entity models the software com-

79

92

Figure 16: ControllerSystem Sub-Language (For Linear Plant)

ponents for interconnecting controllers and the power junction. Through this power port, the

PowerJunction sends the averaged wave transformed sensor signal to the ControllerSystem

and receives the calculated wave transformed control signal from the ControllerSystem. The

PowerOutputPowerInput and PowerOutputPowerInput entities are both parametrized by send

and receive port numbers denoted as SndPortNo and RcvPortNo. In running actual experi-

ments, these port number attributes are used to specify the ports for sending and receiving

information over an actual network.

(iv) Reference: Figure 19 denotes part of the language which describes the ReferenceSystem.

The entity HapticInterface models the software interface for connecting to the PhysicalRef-

erence(which represents the Haptic Paddle) that can be used to generate the desired reference

trajectory. The inverse kinematics entity models the software component for computing the

inverse kinematics of the trajectory received from the haptic device. This component translates

the task space coordinates of the haptic device defined by its x-y-z coordinates to the required

joint angles for a modeled robotic arm [311]. The SendReference entity models the ports for

sending the reference signal to a controller. This entity is parametrized by the port number

denoted as SndPortNo.

80

93

Figure 17: ControllerSystem Sub-Language (For Non-linear Plant)

Figure 18: PowerJunction Sub-Language

(v) Network: The Network entity models the network used for the control system. This entity

provides modifiable parameters for network configuration. The parameter NetworkType pro-

vides an option for choosing either to use wired or wireless network. The parameter DataRate

sets the throughput for simulating network activity. DisturbancePacketSize configures the size

of simulated disturbance attack packets on the network which facilitates the introduction of

delays. This provides a way for simulating the NCS under non-optimal conditions. Disturban-

cePeriod configures the frequency of disturbance attacks on the network.

(vi) Processor: The Processor component models the computer on which the computations and

software components are executed. It is parametrized by the IP address of the computer de-

noted as IPAddress.

81

94

Figure 19: ReferenceSystem Sub-Language

4.4.2 Aspects

PaNeCS has three main design views or aspects: the ControlDesign Aspect, Platform Aspect and

ProcessorAssignment Aspect.

(i) Control Design Aspect: The ControlDesign Aspect visualizes the controller modeling layer.

This includes the plants, controller, and power junction, as well as their interconnections –

indicating the flow of control and sensor signals.

(ii) Platform Aspect: The Platform Aspect visualizes the physical platform components of the

NCS. This view includes plants, controllers, and the network as well as their interconnections

– indicating the flow of data packets over the network. Though the plants and controller appear

in both aspects, in the Platform aspect they represent physical devices rather than control

design concepts.

(iii) Processor Assignment Aspect: The ProcessorAssignment Aspect depicts the mapping of the

software components to processors on which the computations and implementations are to

be performed. The entities in this view include the Processors, PlantSystem, ControllerSys-

tem, PowerJunction and ReferenceSystem. Though the PhysicalPlant and PhysicalReference

appear in this aspect, they represent physical entities rather than control design components.

82

95

4.4.3 Structural Semantics

The main design goal of PaNeCs is to ensure “correctness-by-construction” for passive NCS. To

achieve this objective we impose constraints on the NCS component properties as well as their

interconnections. The language semantics require constraints that cannot be completely captured

with only the metamodeling notations above. Using the Object Constraint Language (OCL), we

can specify well-formedness rules to precisely control the static semantics of the language. GME

is embedded with an OCL engine such that specified constraints are enforced at design time, giving

direct feedback whenever the user attempts to create unacceptable connections in the model or vio-

late any other specified constraints.

Three classes of constraints are implement towards to the structural correctness of PaNeCS

models: Cardinality Constraints ensure that the correct number of components are used in the NCS

design. For example, for each PlantSystem model there must be one Plant. Connection Constraints

restrict the number of allowable connections between components. For example, in the PlantSystem

model there can only be one bidirectional connection between the Plant and BilinearTransformP.

Unique Name Constraints ensure the uniqueness of the names of components in the Plant and Con-

troller subsystems as well as in the top level model of the NCS. The sample OCL constraint below

specifies that the number of connections from a BilinearTransformC model to a DigitalController

must be at most one.

D e s c r i p t i o n : There must be on ly one b i d i r e c t i o n a l c o n n e c t i o n between . . .

B i l i n e a r T r a n s f o r m C t o t h e D i g i t a l C o n t r o l l e r

E q u a t i o n : l e t d s t C o u n t = s e l f . a t t a c h i n g C o n n e c t i o n s (” s r c ” , C o n t r o l l e r B i l i n e a r) . . .

−>s i z e i n d s t C o u n t <> 0 i m p l i e s d s t C o u n t = 1

4.5 Passivity Analysis

In the typical construction of NCS, the system design needs to be analyzed in order to ensure they

satisfy specified system properties and as the model of the system increases in size this process

becomes increasingly difficult and tedious and maybe even intractable. In passivity-based NCS,

in order to ensure overall system passivity, the system components need to be analyzed to ensure

they satisfy passivity constraints. Using an integrated analysis tool in PaNeCS, we can currently

83

96

analyze the passivity properties of any LTI system component which can be specified in state space

representing the model of a plant or controller.

4.5.1 Component Analysis

The analysis of LTI plants and controllers specified in PaNeCS is performed automatically using an

integrated Matlab analysis function. Since each of these components is assumed to have a LTI state

space representation characterized by the matrices A,B,C,D of compatible sizes, we use Linear

Matrix Inequalities (LMIs) together with the CVX semidefinite programming tools for Matlab [312]

[313]. For example, a LMI formula for strict output passivity for an LTI discrete plant or controller

is given by

 ATPA− P − Q̂ ATPB − Ŝ

(ATPB − Ŝ)T −R̂+BTPB

 6 0

Q̂ = CTQC, Ŝ = CTS + CTQD

R̂ = DTQD + (DTS + STD) +R

∃ε > 0, Q = −εI, R = 0, S =
1

2
I, ∃P = P T > 0

(51)

The CVX semidefinite programming (SDP) tool is used in a Matlab script to solve the LMI for each

component. The analysis tool, on invocation (i.e. the modeler presses a button), executes a C++-

based model interpreter within GME which traverses a PaNeCS model visiting LTI components,

and invokes the analysis function to test the passivity of each LTI component in the model. After

each test, the analysis tool notifies the user whether the component passes or fails the passivity

constraint test. Following this process, a user can go back and change the components of the model

that fail the passivity test.

4.5.2 System-Level Analysis

Due to the “correct-by-construction” approach used in our framework in designing networked con-

trol, we only analyze the LTI plants and controller components for passivity. If these components

84

97

satisfy the passivity constraints, the network control system as a whole also satisfies the passivity

principles. The component interconnections are restricted in such a way that they are “correct-

by-construction”. Only valid connections are allowed amongst components, so any interconnected

system of passive components in the language will be globally passive. Therefore, the analysis tool

together with the passivity-based constraints encoded in the semantics of the modeling language,

greatly reduces the analysis burden for determining passivity and hence stability of the composed

NCS design. Using this approach, passivity analysis of NCS, such as the NCS architecture in Fig-

ure 11 provided in Section 4.2, can be easily performed.

4.6 Code Generation

In order to evaluate NCS designs in PaNeCS, we developed model interpreters that can be used

to synthesize software for integration, deployment and testing of NCS. We developed two model

interpreters, one for generating models for the purpose of simulations and the other for running

actual experiments.

(i) Generation of Simulation Models

This model interpreter synthesizes simulation models from PaNeCS NCS models. The in-

terpreter is developed in C++ using the Builder Object Network (BON2) API provided with

GME [310]. The interpreter traverses all the entities of a particular networked control system

instance model and extracts the model components and corresponding parameters. These pa-

rameters and model structure are used to generate MATLAB files for configuring and building

Simulink and TrueTime models to simulate the NCS. The PlantSystem and ControllerSystem

are modeled as Simulink subsystems, which contain the respective Plant and DigitalCon-

troller behavior blocks. Each generated system-level component is connected to a TrueTime

Kernel block. The TrueTime Kernel models a processing node with a scheduler and I/O. Our

models execute on periodic schedules within TrueTime. For this version of our language, the

PowerJunction is implemented as a task in the TrueTime Kernel connected to the Controller-

System. The task that implements the power junction is triggered by data arrival events. Each

TrueTime kernel has an initialization script and a function script specifying timing for I/O and

task execution. The TrueTime Network and TrueTime Wireless network blocks simulate the

85

98

transfer of data packets over a network from one node to another.

(ii) Generation of Executables for Experiments

Similar to the case of synthesizing simulation models, we developed a code generator that

can be used to synthesize software for performing experimental evaluation of NCS. The code

generator is also developed in C++ using the Builder Object Network (BON2) API. For the

purpose of experiments, the Simulink models alone are not sufficient to set up the network

infrastructure. The deployment model, which can be visualized through the Processor Assign-

ment Aspect, describes assignments of models to processors, so we also generate bash scripts

from the deployment model in order to set up and run the experiments. The scripts handle

the network configuration on each node, and then start up the model with the proper param-

eters. The network infrastructure utilizes Netcat and SSH. The power junction, is configured

with a group of servers, and the plant and controller models use client sockets to attach to the

power junction. The client connections transmit data over TCP through a secure shell tunnel

to the power junction. This technique hides many of the network configuration details from

our setup. The Netcat instances serve the purpose of adapting socket types (i.e. client to server

and TCP to UDP) as well as making the Simulink socket connections more robust to failures.

A typical script sets up the SSH tunnel first, runs Netcat to adapt the sockets, and then runs

the model using MATLAB. When the model comes up it finds all of the necessary socket

connections available, whether or not the other models have started yet.

In this framework, the networked system follows a globally asynchronous locally synchronous

execution model. Components are executed locally in a synchronous manner based on the

local sampling period. The controller and plant receivers execute periodically. To preclude the

possibility of blocking, zeros are supplied for missing data values to avoid introducing energy

into the system, thereby preserving passivity. It is assumed that data messages will not arrive

out of order. Our implementation uses secure TCP links between PCs. Except in extreme

overload conditions, message order is maintained.

In regards to buffer sizing, all data supply and consumption rates are known and adequate for

nominal operation. As long as the PC clocks remain relatively close to each other, buffers

will never grow without bound. However, currently we do not provide any guarantee for non-

86

99

ideal operation. If a message receiver crashes or is otherwise delayed, then the sender could

continue to fill the intervening buffer indefinitely which can potentially lead to a crash). We

can handle this contingency by having the sender drop unsent data instead of storing it.

4.7 Simulation Results

In this section, we present the simulation of a networked control system composed of a linear con-

troller and two discrete-time linear plant systems. We show that networked control systems designed

using PaNeCs are robust and remain stable when subjected to uncertain network effects. The con-

troller controls the plants to simultaneously track a specified trajectory. The overall NCS is modeled

in PaNeCS and subsequently Matlab/Simulink and TrueTime code is automatically generated from

the models for evaluation. Although this case study models two discrete-time plants, PaNeCS can

model and simulate an arbitrary number of plants. Figure 20 shows a model for a simple passive

linear controller regulating two passive linear plants to track a specified reference signal. Figure 20a

denotes the Control Design Aspect describing the control design concepts while Figure 20b denotes

the Platform Aspect describing the physical platform components.

The two plants in the model, shown in Figure 20, are simple integrators (corresponding to

models of inertial masses of 2kg and .25kg respectively) which are discretized in time. The plants’

dynamics were modeled in state space form and the corresponding A, B, C, and D matrices as well

as sampling time (Ts) were provided as parameters to the instance model.

The controller for controlling the plants are also specified in the state-space form (A, B, C, D,

and Ts). The parameters values for the plant and controller dynamics are given in Table 1. The

analysis tool checked and verified that the LTI plants and the controller models satisfy the passivity

constraints. Then the integrated PaNeCS model interpreter for generating simulation code was used

to generate platform-specific Simulink simulation models based on the specified parameters and

model structure.

4.7.1 Nominal Conditions

In this scenario, we consider nominal network conditions, hence no addition disturbances were

introduced into the network. Figure 21a shows that the plants closely tracked the reference velocity.

87

100

(a) Control Design Aspect

(b) PlatformAspect

(c) Plant Subsystem

(d) Controller Subsystem

Figure 20: Sample Model of a Networked Control System (Linear Plants)

88

101

The round trip delay for each plant seemed to have very little effect on the stability of the plants’

velocity response. The delay as seen in Figure 21b, can be attributed to the internal processing of

the plants and controllers rather than network delay itself.

Table 1: LTI Plant and Controller Dynamics.
A B C D Ts

Plant1 1 1 .005 .0025 .01s

Plant2 .996 1 .04 .02 .01s

Controller 0 0 0 10π .1s

0 5 10 15 20 25 30 35 40
−0.03

−0.02

−0.01

0

0.01

0.02

0.03
Nominal Velocity response over wireless network (Sampling Time=0.1s)

Time (s)

V
el

oc
ity

 (
m

/s
)

Reference Velocity

Plant 1 Output Velocity

Plant 2 Output Velocity

(a) Nominal velocity response.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

Time (s)

D
el

ay
 (

s)

Nominal time delay for Plant 1 (Sampling Time=0.1s)

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

Time (s)

D
el

ay
 (

s)

Nominal time delay for Plant 2 (Sampling Time=0.1s)

(b) Time delays .

Figure 21: Velocity and Delay Plots (Nominal).

4.7.2 Network disturbances

This experiment introduces a disturbance attack in the network using parameters on the wireless

network block. Figure 22a and 22b shows the velocity response and the time delay respectively for

each plant. The results show that even with disturbance attacks, the plants remain stable in tracking

the reference velocity although the performance is relatively affected as can be seen from the plots.

This demonstrates the advantage of the passivity approach which guarantees the stability of the NCS

in the presence of uncertainties due to network effects.

4.8 Experimental Results

In this section, we present the experimental results for a Networked Multi-Robot System (NMRS)

modeled using PaNeCS. The instance model for the NMRS is designed in PaNeCS specifying the

89

102

0 5 10 15 20 25 30 35 40
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time (s)

V
el

oc
ity

 (
s)

Velocity response with disturbance attack (Sampling Time=0.1s)

Reference Velocity

Plant 1 Output Velocity

Plant 2 Output Velocity

(a) Velocity response with disturbance attack.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

Time (s)

D
el

ay
 (

s)

Time delay for Plant 1 with disturbance attack(Sampling Time=0.1s)

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

Time (s)

D
el

ay
 (

s)

Time delay for Plant 2 with disturbance attack(Sampling Time=0.1s)

(b) Time delays with disturbance attack.

Figure 22: Velocity and Delay Plots (Network Disturbance).

components of the NCS. Subsequently, the software components and deployment model required

for executing the actual NMRS are automatically generated and deployed on the platform.

4.8.1 Experimental Setup

The experimental setup consists of two CrustCrawler robotic arms [314] and one Novint haptic

paddle [315] connected using a networked computing platform. The computing platform consists

of five networked Windows PCs with Matlab/Simulink. The robotic arms and the haptic paddle

are connected to three different PCs via USB interface utilizing Matlab/Simulink APIs. The two

additional PCs are used to implement various software components of the networked architecture.

The distributed platform is modeled in PaNeCS (see Figure 27). The CrustCrawler robot shown in

Figure 23 has four degrees of freedom with AX-12 smart servos at each joint [314]. Each of these

servos has three inputs and five outputs. The inputs are position, velocity, and maximum torque

value, and the outputs are actual position, actual velocity, temperature, load, and feedback voltage.

Joints one and four contain one servo while joints two and three each contain two servos for a total

of seven servos per robot. The robot can be represent as having four points of mass located at the

mid-point of each link. The point masses are: m1 = 0.362 kg, m2 = 0.401 kg, m3 = 0.059 kg,

and m4 = 0.177 kg.

The Novint haptic paddle shown in Figure 25 provides the desired trajectory to be tracked by the

robotic arms in a synchronized fashion. The paddle requires the Haptik Library [315] that provides

90

103

Figure 23: CrustCrawler 4 DOF Arm

Figure 24: CrustCrawler Model

an interface between most haptic paddles and various computer languages like C/C++, Java, and

MATLAB. The haptic paddle API includes forward kinematics software that transforms the joint

positions of the three legs into x-y-z coordinates. When the paddle end effector is moved by the

user, a position signal in x-y-z coordinates is sent into a Simulink haptic paddle block.

4.8.2 PaNeCS Model of the Networked Multi-Robot System

In order to illustrate the model-based framework, we present the NMRS model developed in PaNeCS.Figure 26

shows the Control Design Aspect that visualizes the control design modeling layer and Figure27

shows the Platform Design Aspect which shows the physical components of the system as well as

their interconnections. Our design is based on the assumption that each of the top level models,

which include the PlantSystem, ControllerSystem, PowerJunction and the ReferenceSystem is im-

plemented on a separate processor. The mapping of these components to respective processors is

91

104

Figure 25: Novint Haptic Paddle

Table 2: PlantSystem Model Parameters
Parameter Value
Ts 0.04s
q0 [0 -π/2 π/2 0]
Kv 0.15
τ 2
Samplesize 2
b 2
InputVector, N 4

performed by the ProcessorAssignmentLayer of the model (that is not shown here).

Figure 26: Control Design Layer

The details for implementing the PlantSystem which is identical for the two robots are shown in

Figure 28 and the required parameters are listed in Table 2. The components for implementing the

ControllerSystem are also shown in Figure 29 and the controller parameters are in Table 3. Finally,

Figure 30 shows the components for implementing the ReferenceSystem.

After configuring and entering the desired parameters for the NMRS model, the code generator

is used to generate Simulink models and network scripts. The Simulink models and network scripts

92

105

Figure 27: Platform Design layer

Figure 28: Plant Sub-system

are then deployed on the respective PCs based on the deployment model.

4.8.3 Results

4.8.3.1 Experiment 1: Nominal Case

In this experiment all PCs communicate through a 100BASE-TX Ethernet network. Initially, the

PCs are not connected to the network and the connection sequence is the power junction, robot 2,

robot 3, and controller. Figure 31 shows the x-, y-, and z-coordinates of the robots, along with the

Table 3: Controller Model Parameters
Parameter Value
Ts 0.08s
K 0.5
w π

2

wn 2 π
10

ζ 0.92
b 2
InputVector, N 4

93

106

Figure 29: Controller Sub-system

Figure 30: Reference Sub-system

reference trajectory, and also the angular position of joint 2 of each robot and the respective refer-

ence trajectory. Each robot initially adjusts to its home position. Once the controller is connected

to the power junction, the robots begin following the reference trajectory. The robots track the ref-

erence trajectory in a synchronized manner. The trajectories of the robots are similar enough to be

almost indistinguishable in the plots.

If there is packet loss, the components assume zeros so that no energy is introduced and the sys-

tem remains passive. Note that other design decisions that preserve passivity can be used. Because

of the zeros, the robots attempt to return to their home position, causing the robots to jerk while

following the reference trajectory. To compensate for this undesirable behavior, a low-pass filter is

added to eliminate this high frequency motion. The trade off is attenuation and smoothing of the

trajectory. Despite this, the robots are well synchronized and the NMRS is stable.

To show the network delay, we plot the first dimension of the wave variable transmitted from

robot 2 to the power junction and back in Figure 32. The delay is time varying and on the order of

one second due to the network link, and the buffering of data in the Netcat and SSH components.

94

107

0 50 100 150 200 250 300 350
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t (s)

po
si

tio
n

(m
)

Ctrl Ref
Robot 2
Robot 3

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t (s)

po
si

tio
n

(m
)

Ctrl Ref
Robot 2
Robot 3

0 50 100 150 200 250 300 350
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t (s)

po
si

tio
n

(m
)

Ctrl Ref
Robot 2
Robot 3

0 50 100 150 200 250 300 350
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t (s)
th

et
a

(r
ad

ia
ns

)

Ctrl Ref
Robot 2
Robot 3

Figure 31: x-y-z coordinates and angle of joint 2 of reference, robot 2, and robot 3.

4.8.3.2 Experiment 2: Persistent Link Interruptions

Experiment 2 demonstrates the robustness of the NMRS to persistent link interruptions. To emulate

the link interruptions, a boolean variable is implemented in each plant and the controller, which

controls the data flow to the power junction, and can be toggled online. While the link is inter-

rupted, the power junction simply sends zeros to the respective component. In this way, we avoid

shutting down and restarting the network infrastructure that requires considerable time. During the

experiment, robot 3 is interrupted, then robot 2, and finally, the controller.

The angular position of joint 3 of both robots and the reference trajectory are shown in Figure 33

to illustrate how each robot returns to its home position while its link to the power junction is

interrupted. The figure also shows the y-coordinate of each robot with the reference trajectory.

Since the connection sequence is identical to the nominal experiment, the order in which the robots

are first seen is identical, and each initially adjusts to its home position. Once the controller is

connected to the power junction, the robots begin following the reference trajectory until its link

is interrupted. After approximately 52 sec the data flow of robot 3 is interrupted with the power

95

108

150 151 152 153 154 155 156 157 158 159 160
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

t (s)

u
p2

u
2

Figure 32: Time Delay Between Robot 2 and Power Junction

junction. While interrupted, each of its servos returns to its home position. At approximately 75 sec

robot 3 is reconnected and resumes following the reference trajectory. Next, around 95 sec, the data

flow of robot 2 is interrupted with the power junction. Identically as before, the joints return to the

home position while interrupted. Robot 2 is reconnected at approximately 118 sec. Finally, the data

flow of the controller is interrupted with the power junction around 151 sec, causing both robots to

return to their home position. Again, once the controller is reconnected at approximately 180 sec,

the robots resume following the reference trajectory. Since the link interruptions are implemented

in a very controlled manner, no additional network delay is caused by the link interruptions and the

delays are similar to the nominal case.

0 50 100 150 200 250 300 350
−0.5

0

0.5

1

1.5

2

2.5

3

t (s)

th
et

a
(r

ad
ia

ns
)

Ctrl Ref
Robot 2
Robot 3

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t (s)

po
si

tio
n

(m
)

Ctrl Ref
Robot 2
Robot 3

Figure 33: Persistent link interruptions: Angle of joint 3 and y coordinate of reference, robot 2, and
robot 3.

96

109

4.8.3.3 Experiment 3: Intermittent Wireless Connection

In Experiment 3, the PC running the controller is connected to the Ethernet network through an

802.11b wireless connection. The experiment demonstrates the performance of the NMRS with an

intermittent communication channel. Figure 34 shows the angular position of joint 3 of the robots

along with the reference trajectory. Again, each robot initially adjusts to its home position. Due

to the increased network delay, the plants do not begin tracking the reference trajectory until after

approximately 29 sec into the experiment.

0 50 100 150 200 250 300 350
−0.5

0

0.5

1

1.5

2

2.5

3

t (s)

th
et

a
(r

ad
ia

ns
)

Ctrl Ref
Robot 2
Robot 3

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t (s)

po
si

tio
n

(m
)

Ctrl Ref
Robot 2
Robot 3

Figure 34: Intermittent connection: Angle of joint 3 and y coordinate of reference, robot 2, and
robot 3.

Because of the unreliable wireless connection between the controller and power junction much

data is dropped, causing more high frequency components in the trajectories of the robots. Even with

the low-pass filter, the trajectories are clearly not as smooth and accurate as in previous experiments.

Observe, for example, the peak between 35 and 40 sec in Figure 33 and compare it to the behavior

in Figure 34. Obviously data is being dropped from the controller during this time since in both

robots there is more attenuation and no well defined peak as in Figure 33. Between 204 and 260 sec

the connection gets significantly worse. Despite the intermittent connectivity, the NMRS remains

stable and still manages to track the reference reasonably well while the connection is established.

Again, the y-coordinate of each plant, along with the reference trajectory, is shown in Figure 34.

97

110

4.9 Summary

Our model-based approach simplifies the process of designing “correct-by-construction”’ passive

networked control systems. The integrated analysis tool, together with encoded passivity constraints

in the modeling language significantly reduces the burden typically involved in analyzing NCS for

stability. The integrated model interpreters facilitate rapid prototyping of passivity-based NCS, al-

lowing for quick model reconfiguration, code generation and evaluation using simulations or actual

experiments. We present simulation results on the networked control of linear plants as well as

experimental results on a networked multi-robot system. The presented results illustrates the effec-

tiveness of our approach as well as the robustness of NCS modeled in PaNeCS.

98

111

CHAPTER 5

PASSIVITY-BASED ADAPTIVE SAMPLING CONTROL

5.1 Introduction

In the traditional NCS, the computation and exchange of information over the communication net-

work is performed periodically based on a fixed sampling interval. This periodic strategy allows

the use of well-established theory in sampled-data systems to design and analyze the overall sys-

tem [316][114]. Although, the periodic strategy is well-known and convenient, it is overly con-

servative, and can be categorized as “open-loop sampling” which essentially implies the periodic

or static use of the computational and network resources regardless of the conditions of the net-

work or changes in the system that is being controlled i.e. the sampling approach is not con-

trolled by any feedback mechanism. An alternative strategy, adaptive sampling, has become very

important due to the strong need for the efficient use of limited computational and network re-

sources [116][317],[318],[115]. The main idea of adaptive sampling is to compute the sampling

interval, Ti, at which a control law needs to be executed or when an information needs to be sent

over a network, based on a specified condition. As outlined in Chapter 2, there are only a few results

addressing adaptive sampling in NCS framework. In NCS, the variability of the sampling intervals

in adaptive sampling poses additional challenges on the achievable stability and performance of the

NCS especially in the presence of network uncertainties such as delays and packet losses.

In this chapter, in an effort towards efficiently utilizing network resources while achieving per-

formance objectives in an unreliable communication network, we propose an integrated NCS archi-

tecture to tackle the two highlighted challenges involving limited network resources and network

effects. Specifically, we integrate the concept of passivity and adaptive sampling in order to achieve

both the resilience of NCS in the presence of network effects as well as the efficient utilization of

the limited network resources. The integration is used in a hierarchical NCS [15] framework for

the purpose of trajectory tracking. The proposed framework is general in the sense that it can be

adapted for other control performance objectives but for clarity we present the framework for a

trajectory tracking objective. The integrated framework is performance-aware in the sense that the

99

112

utilization of the resources is based on achieving a desired tracking performance. Our approach

differs from most of the existing approaches which are typically designed for the main purpose of

guaranteeing stability. The integrated adaptive sampling framework not only ensures the efficient

utilization of network resources but also provides the flexibility of incorporating other adaptive

sampling approach for example network scheduling adaptation.

The main contribution of this work is the integration of two fundamental control theoretic con-

cepts, passivity and adaptive sampling, in order to simultaneous address the challenges of robustness

to network effects as well as efficient utilization of network resources. We present an NCS architec-

ture that highlight the integration. We introduce a pair of sample-and-hold components, a variable

passive sampler and variable passive hold, that handles non-uniform sampling intervals while guar-

anteeing passivity. We analytically demonstrate passivity of the proposed NCS architecture. Also,

we analytically demonstrate the performance objective of trajectory tracking in the hierarchical

NCS framework commonly used in robotics and unmanned aerial vehicles (UAV) applications. Fi-

nally, we present both simulations and experimental results involving a case study on the trajectory

tracking of a robotic arm over a network in order to demonstrate the benefits of the integrated NCS

architecture and the effectiveness of the approach.

The rest of the chapter is organized as follows: The problem addressed in the chapter is clearly

formulated in Section 5.2. The proposed NCS architecture is introduced in Section 5.3. The analyt-

ical results on passivity and trajectory tracking are presented in Section5.4. We provide simulations

and experimental results for a robotic tracking case study in Sections 5.5 and 5.6 respectively.

Finally, a summary is provided in Section5.7.

5.2 System Model and Problem Statement

This chapter considers the problem of achieving trajectory tracking in an unreliable communication

network with limited resources. First, we describe the notations used in the following sections. The

notations used throughout are standard. The set of natural numbers, integers, and real numbers are

denoted by N = {1, 2, . . . }, Z, and R, respectively. The m-dimensional Euclidean space is Rm and

the set of all m by n matrices over the real numbers is Rm×n. The transpose of a vector x ∈ Rm

and matrix M ∈ Rm×n are given by xT and MT respectively.

100

113

5.2.1 System Model

In this section, we describe the system model as well as the underlying assumptions. We consider the

system model,Hmp, as depicted in Figure 35. The main components of the model are the dynamical

plant system, Hp, the local controller, Hlc and an error function block, Hes.

Figure 35: System Model, Hmp.

(a) Plant Model: The dynamical plant, Hp, which could be linear or nonlinear is defined as

Hp :

ẋ = f(x, ap)

yp = h(x)

(52)

where x ∈ Rn represents the state variables, ap ∈ Rm represents the control inputs to the plant

and yp ∈ Rm represents the plant outputs. The variable, e, is the error defined as the difference

between the plant output, yp and a reference trajectory, yd ∈ Rm.

(b) Local Controller: The local controller, Hlc, in Figure 35, is a functional block which takes fp,

yd and e as inputs and computes an output ap which is fed into the plant.

(c) Error Function: The functional block, Hes, is an error operator which relates the error, e, to

the output, s as shown in Figure 35.

We assume the following about the system model, Hmp

Assumption 1: The input-output mapping, from input, fp to output, s as shown in Figure 35 can be

defined such that Hmp : fp 7→ s is passive.

101

114

Assumption 2: Hmp is zero-state detectable [303]. This assumptions ensures that passive mapping

Hmp : fp 7→ s is stable.

Assumption 3: There exists a function, Hes, relating e to s with Λ defined as a positive diagonal

matrix, in the form,

s = ė+ Λe (53)

such that if s→ 0 then

lim
t→∞

e(t) = 0 (54)

.

Assumption 4: The desired reference trajectory, yd, is bounded and twice differentiable.

In regards to the communication over the network, we assume the following on the packet handling

of network messages:

Assumption 5: The networked packet handling mechanism is designed to ensure that no duplicate

packet is processed.

Assumption 6: In the case of packet loss, if the input buffer is empty, null packets are processed.

Assumptions 5 and 6 ensure that no additional energy is introduced by the communication channel.

5.2.2 Problem Statement

The two main problems considered in this work are described as follows:

1. We consider the problem of designing a robust hierarchical networked control system for

achieving the following tracking objective in an unreliable wireless network:

(a) The output, yp, of the plant, Hp, tracks a local reference trajectory, yd such that

lim
t→∞

yp(t)− yd(t) = 0 (55)

(b) In the presence of a non-local reference input, rc, which can be used to model behaviors

such as the presence of an obstacle in the plant’s environment, the plant output tracks a

modified reference signal, yda such that

lim
t→∞

yp(t)− yda(t) = lim
t→∞

yp(t)− yd(t)− rc(t) = 0 (56)

102

115

Hence, ensuring that the plant avoids the obstacle.

2. We consider the problem of efficiently utilizing the network resources while ensuring that the

tracking objective is achieved.

In the following sections, we propose a solution to tackle the above problems.

5.3 Integrated Passivity-based Adaptive Sampling Control Architecture

Figure 36, depicts the proposed networked control architecture which we refer to as passivity-based

adaptive sampling control (PBASC) architecture . This architecture is designed to achieve trajectory

tracking as well as the efficient use of network resources. The remote system and the networked con-

troller are shown on the left and right sides of the network in Figure 36 respectively. On the remote

system side of the network, the block Hmp represents the system model introduced in Figure 35. In

what follows we describe the components of Figure 36.

Figure 36: PBASC Architecture.

5.3.1 Adaptive Sampling Scheme

The sampling policy box, in Figure 36 depicts an adaptive sampling scheme which outputs the

sampling intervals. In order to interconnect the system,Hmp to the digitally implemented networked

controller, a sample-and-hold mechanism is needed. Traditionally, the sample-and-hold mechanism

is based on fixed sampling periods but in order to efficiently utilize network bandwidth we use an

103

116

adaptive sampling scheme. The adaptive sampling mechanism can be designed based on any of

the existing adaptive sampling techniques in order to generate sampling intervals. For the purpose

of tracking, we need a mechanism that determines the sampling intervals based on a function of

tracking error. We chose the adaptive sampling mechanism based on the self-triggered control

concept described in [319]. This approach enables us to specify adaptive sampling scheme in terms

of a storage function, a lyapunov-like function of the tracking error.

Our triggering mechanism is based on the system model,Hes, relating the tracking error, e, with

the output of Hmp, s. Rearranging and restating (53), we obtain the system model defined as

ė(t) = −Λe(t) + s(t); (57)

s(t) = s(ti), t ∈ [ti, ti+1) (58)

where [ti]i∈N is an increasing sequence of sampling times with t0 = 0. This model represents a

strictly output passive mapping with the tracking error, e, as the output and s, as the input. The

system model in (57) and (58) could be represented in a minimal state-space realization, where the

tracking error, e, is the state as well as the output of the system and s, is the input. This results in

the state-space coefficients where A = −Λ, B = C = I , the identity matrix, and D = 0.

A map, Γd, can then be used to define a self-triggered implementation of the system model given

by (57) and (58). This map determines the ti+1, as a function of the tracking error output, e at the

time ti, i.e., ti+1 = ti+Γd(e(ti)). If we denote by Ti, the sampling interval Ti = ti+1− ti we have

Ti = Γd(e(ti)). As described in [319], the design of a self-triggered policy involves a sequence of

steps.

First, an output function to describe the evolution of the system’s tracking error needs to be

determined. The output function for our sampling policy is the storage function of the system

defined by (57) and (58).

V (e) = eTPe (59)

where P is a positive definte matrix satisfying the passivity constraints for the system model defined

by (57) and (58). The passivity constraints for the strictly output passive system is defined by the

104

117

following Linear Matrix Inequality (LMI) constraints [296].

 ATP − PA− Q̂ PB − Ŝ

(PB − Ŝ)T −R̂

 6 0

Q̂ = CTQC, Ŝ = CTS + CTQD

R̂ = DTQD + (DTS + STD) +R

∃ε > 0, Q = −εI, R = 0, S =
1

2
I

(60)

The output function defined in (59) has an estimated decay rate, ρ0 which can be computed from

the parameters of (60) as

ρ0 =
γmin(Q)

γmax(P)
(61)

where γmin and γmax represent the minimum and maximum eigenvalues respectively of the indi-

cated matrices [320].

Next, we define a performance specification in terms of the tracking error output. Our perfor-

mance function is an exponentially decaying function of the output function with an initial value as

the current sampled error. The performance specification is defined as:

D(t) = V (e(ti))exp
−ρ(t−ti) (62)

In order to guarantee that the performance function bounds the output function, the decay rate of

the performance specification is chosen as ρ < ρ0.

With the output function and performance specification, we determine a continuous time trig-

gering function. From (59) and (62), the triggering condition is given as

hc(ti, e(t), e(ti)) := V (e(t))− V (e(ti))exp
(−ρ(t−ti)) ≤ 0; (63)

for some 0 < ρ < ρ0.

Finally, a self-triggered policy can then be determined from the continuous time triggering func-

105

118

tion. In order to check when the triggering condition defined in (63) is violated, we consider a

discrete-time implementation based on a discrete step size, ∆ ∈ R+ since no continuous time

implementation can be used to perform this check. With, Ti defined as the sampling interval, let

Tmin and Tmax be defined as the minimum and maximum sampling intervals respectively. Also

Nmin := ⌊Tmin/∆⌋, Nmax := ⌊Tmax/∆⌋. The discrete-time implementation can be defined as fol-

lows:

hd(e(ti), n) := hc(ti, e(t), e(ti)) ∀n ∈ [0, Nmax] ∀i ∈ N (64)

From this discrete-time implementation, the map Γd : Rn 7→ R+, for computing the next sampling

interval or time for the tracking error system model given in (57) is given by:

Γd(e(ti)) := max{Tmin, ni∆} (65)

where

ni := max
n∈N

{n ≤ Nmax|hd(e(ti), c) ≤ 0, c = 0, ..., n} (66)

The lower and upper bounds of the sampling intervals are explicitly enforced by Tmin and Tmax

respectively. The upper bound enforces robustness of the implementation and limits computational

complexity. The discrete time step, ∆, can be chosen based on desired accuracy and computational

complexity.

5.3.2 Wave Variables

The blocks denoted as b in Figure 36 each represents the wave variable transformation which was

previously introduced and described in Section3.6. On the left hand side of Figure 36, the control

signal, z(t) and the system’s output signal, s(t) are transformed into the wave domain through the

scattering transformation. The scattering transformation produces the continuous wave variables

up(t) and vcd(t), which are related to the signals, z(t) ∈ Rm and s(t) ∈ Rm as follows:

1

2
(uTp (t)up(t)− vTcd(t)(t)vcd(t)) = sT(t)z(t). (67)

106

119

The wave variables up(t) and vcd(t) can be described by the following expressions:

up(t) =
1√
2b

(bs(t) + z(t)); vcd(t) =
1√
2b

(bs(t)− z(t)); (68)

where b ∈ R+
0 .

On the right hand side of Figure 36, the scattering transformation produces discrete wave vari-

ables upd[i] and vc[i], which are related to the corresponding discrete control signal zc[i] ∈ Rm and

the system’s discrete-time output sc[i] ∈ Rm as follows:

1

2
(uTpd[i]upd[i]− vTc [i]vc[i]) = zTc [i]sc[i] (69)

The wave variables upd[i] and vc[i] can be described by the following expressions:

upd[i] =
1√
2b

(bsc[i] + zc[i]); vc =
1√
2b

(bsc[i]− zc[i]); (70)

The wave variables upd[i] and vcd[i] are the delayed versions of the wave variables up[i] and vc[i]

respectively such that

upd[i] = up[i− p(i)]; vcd[i] = vc[i− c(i)] (71)

in which p(i), c(i) ∈ N+
0 are the respective delays at time i as shown in Figure 36 as Z−p(i) and

Z−c(i).

5.3.3 Variable Passive Sampler and Variable Passive Hold

The blocks VPS and VPH in Figure 36 denote the variable passive sampler and variable passive

hold respectively. These blocks represent a pair of sample-and-hold components that can handle

adaptive sampling while at same time preserving passivity. These components perform their tasks

based on the sampling intervals provided by the adaptive sampling policy described in Section 5.3.1.

VPS performs the task of converting continuous time wave variables to discrete time wave variables

while VPH performs the task of converting discrete time wave variables to continuous time wave

variables.

107

120

The VPS and VPH are designed to satisfy the inequality:

∫ tN

0
(uTp (t)up(t)− vTcd(t)vcd(t))dt ≥

N−1∑
i=0

Ti(u
T
p [i]up[i]− vTcd[i]vcd[i]) (72)

To satisfy (72), VPS can be designed to satisfy the following inequality

∫ tN

0
uTp (t)up(t)dt ≥

N−1∑
i=0

Tiu
T
p [i]up[i], (73)

while VPH can be designed to satisfy

N−1∑
i=0

Tiv
T
cd[i]vcd[i] ≥

∫ tN

0
vTcd(t)vcd(t)dt (74)

These inequalities ensure that no energy is generated by the sample and hold devices and thus

preserve passivity. Let the jth element of the column vectors up(t) and up[i] be defined as upj (t)

and upj [i], respectively, where j = 1, ...,m and assume that upj(t) = 0; if t< 0. A design of the

VPS that ensures condition (73) is given by

upj [i] =
1√

Ti−1Ti

∫ ti

ti−1

upj (t)dt, ∀ j ∈ {1, . . . ,m}. (75)

where upj [0] = 0 and upj (t) is the continuous-time wave variable.

In a similar manner, a design of the VPH that satisfies the condition in (74) is given by

vcdj (t) = vcdj [i], t ∈ [ti, ti+1). (76)

The proofs for both (75) and (76) are provided in Section5.4.

5.3.4 Networked Controller

The networked controller provides control law updates at the request of the system, Hmp in order

for the plant, Hp to track a desired trajectory. Additionally, for the case of rc as shown in Figure 36,

the networked controller introduces an additional bias to the desired local trajectory. As a result of

the introduced bias, yp the output of the plant, Hp, tracks the desired local trajectory, yd plus an

108

121

additional offset, rc due to the bias.

The networked controller, Hc, is an event-based proportional controller defined as

zc[i] = Hc(fc[i]) = Kc(sc[i]− Λrc[i]) (77)

where the proportional gain, Kc = diag[Kc1,Kc2, ...,Kcm] is a positive diagonal matrix. rc ∈ Rm

is the bias reference input and Λ is a positive diagonal matrix used in (53).

The networked controller is strictly input passive [99] with an input-output mapping : fc 7→ zc.

This implies that
N−1∑
i=0

Tiz
T
c [i]fc[i] ≥ δ

N−1∑
i=0

Tif
T
c [i]fc[i]− β2 (78)

where δ, β2 ∈ R+
0

5.4 Analysis

In this section, we present two main analytical results. First, we show that the proposed PBASC

architecture is passive. In addition, under certain assumptions, we show that the overall system, with

an input-output mapping rc 7→ s, is strictly-output passive. Secondly we show that the proposed

architecture achieves trajectory tracking of a local reference both in the presence and absence of

bias introduced at the networked controller.

5.4.1 Passivity

First, we introduce the following two lemmas to show that the variable sampling-and-hold compo-

nents, VPS and VPH, are passive by design.

Lemma 5.1. The proposed VPS given by (75) satisfies the variable passive-sampler condition in

(73).

109

122

Proof. Combining (75) and the Cauchy-Schwarz inequality with up[0] = 0 we have

N−1∑
i=0

Tiu
T
p [i]up[i] =

N−1∑
i=0

m∑
j=1

Tiu
2
pj [i]

=
N−1∑
i=1

m∑
j=1

Ti

(
1√

TiTi−1

∫ ti

ti−1

upj (t)dt

)2

≤
N−1∑
i=1

m∑
j=1

1

Ti−1

∫ ti

ti−1

u2pj (t)dt

∫ ti

ti−1

dt

≤
∫ tN

0
uTp (t)up(t)dt.

Lemma 5.2. The proposed VPH given by (76) satisfies the variable passive-hold condition in (74).

Proof. From (76) and with t0 = 0, we have

∫ tN

0
vTcd(t)vcd(t)dt =

N−1∑
i=0

m∑
j=1

v2cdj [i]

∫ ti+1

ti

dt

=

N−1∑
i=0

Tiv
T
cd[i]vcd[i]

Next, we present the following theorem that ensures the passivity of the proposed PBASC ar-

chitecture.

Theorem 5.3. Consider the proposed PBASC architecture shown in Fig. 36, if the components of

the architecture satisfy their individual passivity constraints such that Hmp is passive, VPH and

VPS are both passive, the networked controller is strictly input passive and the assumptions A5 and

A6 hold, then the closed loop system described in Fig. 36 is passive. Additionally, if Kc = bI and

rp(t) = 0, the input-output mapping rc 7→ s shown in Fig. 36 is strictly output passive [99].

Proof. Multiplying both sides of (72) by 1
2 , and substituting (67) we have

∫ tN

0
(sT(t)z(t))dt ≥ 1

2

N−1∑
i=0

Ti(u
T
p [i]up[i]− vTcd[i]vcd[i]) (79)

110

123

If the assumption that no duplicate packet is processed holds and from (71) we can guarantee that

N−1∑
i=0

Ti(u
T
p [i]up[i]− vTcd[i]vcd[i]) ≥

N−1∑
i=0

Ti(u
T
pd[i]upd[i]− vTc [i]vc[i]) (80)

Multiplying both sides of (80) by 1
2 , and using (69) we have

1

2

N−1∑
i=0

Ti(u
T
p [i]up[i]− vTcd[i]vcd[i]) ≥

N−1∑
i=0

Tiz
T
c [i]sc[i] (81)

From (79) and (81), we obtain

∫ tN

0
(sT(t)z(t))dt ≥

N−1∑
i=0

Tiz
T
c [i]sc[i] (82)

Substituting sc = fc− rc and z = rp−fp in (82) and after further rearrangement and simplification

we have

∫ tN

0
(sT(t)rp(t))dt+

N−1∑
i=0

Tiz
T
c [i]rc[i] ≥

N−1∑
i=0

Tiz
T
c [i]fc[i] +

∫ tN

0
(sT(t)fp(t))dt (83)

From (12) and substituting (78) in (83) and with fc = Kc
−1zc we have

∫ tN

0
(sT(t)rp(t))dt+

N−1∑
i=0

Tiz
T
c [i]rc[i] ≥ δ

N−1∑
i=0

Tiz
T
c [i]K

−2
c zc[i]− β1 − β2 (84)

Let ηmin>0, be defined as the minimum diagonal element of Kc, then (84) can be rewritten as

∫ tN

0
(sT(t)rp(t))dt+

N−1∑
i=0

Tiz
T
c [i]rc[i] ≥

δ

η2min

N−1∑
i=0

Tiz
T
c [i]zc[i]− β1 − β2 (85)

Thus, the closed loop system is passive.

Next we show that with rp = 0, the input-output mapping rc 7→ s is strictly output passive

[99][321]. With rp = 0, we have that

∫ tN

0
(sT(t)fp(t))dt =

∫ tN

0
(sT(t)(−z(t)))dt ≥ −β1 (86)

111

124

From the expresion of vcd(t) in (68), solving for z(t) and substituting in (86) we have

√
2b

∫ tN

0
(sT(t)vcd(t))dt ≥ b

∫ tN

0
(sT(t)s(t))dt− β1 (87)

Substituting zc[i] = Kcsc[i]−KcΛrc[i] in the expression for vc defined in (70) and with bI = Kc,

simplifying we have

vc =
−1√
2b
KcΛrc (88)

∀t ∈ [ti, ti+1) and based on the expression in (71), substituting vcd(t) in (87) and let ∀t ∈ [ti, ti+1)

rcd(t) = rc[i− c(i)] and simplifying we have

N−1∑
i=0

∫ ti+1

ti

(sT(t)KcΛrcd(t))dt ≥ b

∫ tN

0
(sT(t)s(t))dt− β1 (89)

Assuming the maximum diagonal component of KcΛ = σmax then from (89) we have that

∫ tN

0
(sT(t)rcd(t))dt ≥

b

σmax

∫ tN

0
(sT(t)s(t))dt− β1

σmax
(90)

Hence, based on the definition of strictly output passivity in (13), we conclude from (90), that the

input-output mapping rc 7→ s, is strictly output passive.

5.4.2 Tracking

Theorem 5.4. Consider the proposed PBASC architecture shown in Fig. 36, with the system, Hmp

and the event-based networked controller described by (77). Assuming the disturbance input,

rp(t) = 0, then

lim
t→∞

ea(t) = lim
t→∞

yp(t)− yda(t) = 0. (91)

where yda and ea are the modified desired trajectory and modified tracking error respectively in the

presence of a bias rc.

Proof. The system output variable sa, can be stated as

sa = s− Λrc = ẏp − ẏd + Λyp − Λyd − Λrc

112

125

Rearranging the terms,

sa = ẏd − ẏda + Λyd − Λyda = ėa + Λea

where yda=yd+rc is the new adjusted trajectory including the effect of introduced bias and ea is the

adjusted tracking error. Note that the expression for sa is similar to that described in (53), the only

difference being the presence of the bias input, rc, introduced by the networked controller. Based

on Fig. 36, if fc = sca = sc − Λrc, then a corresponding output of the networked controller, zca be

defined as

zca = Kcsca; (92)

Assuming no delays and packet losses, we can define the following:

upd[i] = up[i]; vcd[i] = vc[i]; (93)

Also, the wave variables from both the and controller sides of the network described in (68) and

(70) respectively using the new variables, sa, za, zca and sca can then be concisely described by

up =
1√
2b

(bsa + za); upd =
1√
2b

(bsca + zca); (94a)

vcd =
1√
2b

(bsa − za); vc =
1√
2b

(bsca − zca); (94b)

Substitute (94a) into (75) and from (92), solving for sca, we have

sca[i] =
1

(b+Kc)

1√
TiTi−1

∫ ti

ti−1

(bsa + za)(τ)dτ (95)

Next, substitute (94b) into (76) and from (92) we

(bsa − za)(t) = (b−Kc)sca[i] (96)

113

126

Substitute (95) in (96)

(bsa − za)(t) =
(b−Kc)

(b+Kc)

∫ ti

ti−1

(bsa + za)(τ)dτ

Assuming steady-state conditions, we have that Ti = Ti−1 = T , we have

(bsa − za) =
(b−Kc)

(b+Kc)
(bsa + za)

After further simplification, solving for za, results in

za = Kcsa (99)

With the system considered to be passive from fpa 7→ sa, from (99), fpa = −za = −Kcsa.

Assuming A2 holds and with rp = 0, the system is asymptotically stablized at the origin sa = 0,

which implies that limt→∞ ea(t) = 0. Based on this, yp = yda, hence guaranteeing tracking of the

adjusted trajectory.

Corollary 5.5. In the absence of a networked controller bias, that is with the input vector rc = 0,

the plant system, Hp tracks the desired trajectory.

5.5 Simulation Results

We present a case study which involves the trajectory tracking control of a robotic manipulator over

a wireless network using the proposed PBASC architecture. First, we provide the dynamic model

of the robotic manipulator and then present the derivation of the passive system mapping, Hmp and

the relationship between the tracking error, e, and the system output, s. Using the derived mapping

we present results of the evaluation.

114

127

5.5.1 Derivation of Hmp and Hes for the robotic manipulator

In the absence of friction and disturbances, the Euler-Lagrange equations of motion for an n-degree-

of-freedom robotic manipulator can be generally described by [19]:

M(yp)ÿp + C(yp, ẏp)(ẏp) + g(yp) = τ ; (100)

where yp(t) ∈ Rn is the vector of joint angles, τ(t) ∈ Rn is the input torque vector, M(yp) ∈

Rn×n is the inertia matrix, C(yp, ẏp) ∈ Rn×n is the matrix of centrifugal and coriolis effects, and

g(yp) ∈ Rn is the gravity vector. In order to obtain the passive mapping, Hmp and the tracking

error function, Hes for the robotic manipulator in the form described in Section 5.2, we sought the

sliding-mode technique employed in [20] where s is introduced as a sliding variable. The detailed

description is as follows:

With the tracking error, e defined as yp(t)− yd(t), we choose the local controller, Hlc as:

τ =M(yp)ÿr + C(yp, ẏp)ẏr + g(yp) + fp; (101)

where fp is the input to the system, Hmp. Let yr and ẏr be defined as

yr = yd − λ

∫ t

0
e; ẏr = ẏd − Λe; (102)

where Λ, as defined in Section 5.2, is a positive diagonal matrix. By combining (100), (101) and

(102), we obtain the following

M(yp)ṡ+ C(yp, ẏp)s = fp; (103)

where s is defined as

s = ẏp − ẏr = ė+ Λe. (104)

The expresion in (103) results in the system, Hmp, a passive input-output mapping from fp 7→ s.

Additionally, (104) results in the desired function, Hes relating the system output, s to the tracking

error, e. Hence, the obtained Hmp and Hes satisy the assumptions stated in Section 5.2, we can then

115

128

use the mapping in our PBASC framework for tracking purposes.

5.5.2 Evaluation

We evaluate the robotic manipulator case study using simulations. The setup involves the passive

mapping, Hmp for the robot and an event-based networked controller, Hc, communicating over a

wireless network as shown in Figure 36. The dynamics of Hmp and Hc are implemented using

Matlab/Simulink models while TrueTime is used to model the wireless network dynamics. The

network protocol used is 802.11b, with a speed/bandwidth of 11Mbps. The robot has four degrees-

of-freedom and is modeled using four points of mass. The point masses are: m1 = 0.362kg,

m2 = 0.401kg, m3 = 0.059kg and m4 = 0.177kg. The design parameters for the self-triggered

policy are Tmin = 0.01s, Tmax = 0.1s, ∆ = 0.001s and P = 0.5 ∗ I . The other parameters are

wave impedance, b = 1, controller gain, Kc = I , and the design parameter, Λ = 10 ∗ I .

The goal of the approach is for the robot to track a specified trajectory while efficiently using

the network resources and maintaining stability. We focus on joint 2 of the robotic arm with a

rest position of 0.17 radians. The desired local trajectory with respect to the home position is

yd2 = 0.5sin(2π5).

We also evaluate the introduction of a bias, by the networked controller, which modifies the

desired reference trajectory. This bias can be viewed as the presence of an obstacle in the robotic

manipulator’s path which can only be perceived by the networked controller.

5.5.2.1 PBASC Approach vs Traditional Approach.

This scenario considers nominal network conditions with no additional delays and packet losses.

We model the presence of an obstacle as a step reference input, rcj = 0.9, which is introduced

in the robot’s environment between the interval from 3 seconds to 10 seconds. Figures 37a and

37c show the trajectory of joint 2 and the sampling intervals plots respectively using our PBASC

approach.

We compare the plots from our nominal scenario with the case of a traditional sampling alterna-

tive in the same framework but instead using a fixed sampling period (FSP) of Tmin. Figures 37b and

37d show the trajectory and sampling intervals plots respectively for the FSP approach. Compara-

tively, it can be seen that both approaches closely track the specified trajectory and in the presence

116

129

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(s)

Jo
in

t A
ng

le
(r

ad
ia

ns
)

Joint 2 Reference+Bias
Joint 2 Actual

(a) PBASC Trajectory.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(s)

Jo
in

t A
ng

le
(r

ad
ia

ns
)

Joint 2 Reference+Bias
Joint 2 Actual

(b) FSP Trajectory.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

0.12

S
am

p
lin

g
 T

im
e(

s)

Time(s)

(c) PBASC Sampling Intervals.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

0.12

S
am

p
lin

g
 T

im
e(

s)

Time(s)

(d) FSP Intervals.

Figure 37: Simulation Results - PBASC Approach vs. FSP Approach in Nominal Case.

an obstacle the trajectories are adjusted with a bias of 0.9 although the FSP approach seems to

respond quicker initially. The average tracking error, the average absolute difference between the

joint’s trajectory and the desired trajectory for the PBASC and FSP approaches are 0.1064 and 0.04

respectively. On the other hand, using PBASC approach, fewer control law updates are required in

order to maintain tracking thereby reducing the amount of network resources utilized.

5.5.2.2 Time-Varying Delays.

This scenario considers the effect of time-varying delays. To simulate the case of time-varying

delays, starting the nominal case we incorporate a disturbance node in the network with a sampling

period of 0.05 seconds. The disturbance node floods the network with packets based on a Bernoulli

process with parameter d. The disturbance node samples a uniformly distributed random variable

X[k]∈ [0, 1] every 0.05 seconds. If X[k] > d, a disturbance packet is forced on the network.

117

130

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(s)

Jo
in

t A
ng

le
(r

ad
ia

ns
)

Joint 2 Reference+Bias
Joint 2 Actual

(a) PBASC Trajectory(Delay).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

0.12

S
am

p
lin

g
 T

im
e(

s)

Time(s)

(b) Sampling Intervals (Delay).

Figure 38: Simulation Results - PBASC Approach with Introduced Delays.

Figure 38a shows the trajectory of joint 2 in the presence of time-varying delays. Compared to

the nominal case using the PBASC approach, due to the presence of time delays it takes the system

a little longer to adjust it’s trajectory in order to track the modified trajectory. The average tracking

error in the presence of time delays is 0.117. Also, the impact of the delay can also be seen in

Figure 38b, as more control updates are requested in order to achieve tracking. The overall system

still maintains stability in the presence of time-varying delays.

5.5.2.3 Packet Losses.

This scenario demonstrates the effect of packet losses on the PBASC approach. We consider a

lossy network whereby packets containing either sensor updates or control signals can be lost in the

communication channel. The packet loss conditions are designed using a probabilistic Bernoulli

loss model. A packet is dropped if a sampled probability is less than a specified probability. We

consider the case of thirty percent probability of packet loss. The average tracking error with time

delays is 0.1485. From Figures. 39a and 39b, the effect of packet losses is clearly evident from the

plots by the deteriorated performance in tracking but the overall system remains stable.

5.6 Experimental Results

In this section, we present an experimental evaluation of the proposed PBASC using the networked

robotic manipulator case study described in Section 5.5. In this evaluation, instead of the using

a model of the robot and TrueTime for modeling the network and platform as in the Section 5.5,

118

131

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(s)

Jo
in

t A
ng

le
(r

ad
ia

ns
)

Joint 2 Reference+Bias
Joint 2 Actual

(a) PBASC Trajectory(Loss).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

0.12

S
am

p
lin

g
 T

im
e(

s)

Time(s)

(b) Sampling Intervals (Loss).

Figure 39: Simulation Results - PBASC Approach with Packet Loss.

we use an actual robotic manipulator and an actual wired/wireless network. We will first present

the experimental setup for the evaluation and then we provide a brief overview of the Real-Time

Windows Target (RTWT) software. Subsequently, we present the various scenarios considered and

the results from each scenario.

5.6.1 Experimental Setup

The setup for the experimental evaluation of the proposed PBASC is depicted in Figure 40. On

the right-hand side of Figure 40, the robotic manipulator is connected to a computing unit, denoted

C1, through a USB2Dynamixel controller. The computing unit, C1, running RTWT, executes the

software components on the plant side of the network which includes the local controller, variable

passive sampler and variable passive hold, the adaptive sampling scheme, wave transformation, the

local reference and the robot’s interface software. The computing unit, C2, on the left-hand side

of the network executes the event-based networked controller, wave transformation and reference

input. The communication between the plant and controller is over an wired/wireless network.

5.6.2 Real-Time Windows Target

Real-Time Windows Target (RTWT) is a Matlab/Simulink rapid prototyping software which pro-

vides a PC solution for designing and executing real-time systems. RTWT allows one to use a PC

as a standalone self-hosted target for running Simulink models interactively in real-time. RTWT

supports direct I/O, providing real-time interaction with Simulink models, making it an easy-to use,

119

132

Figure 40: Experimental Platform Configuration

low-cost target environment for rapid prototyping and hardware-in-the-loop simulation. RTWT can

be operated in two main modes, normal mode and external mode. In the normal mode, one can

use the standard Simulink environment together with components to create and simulate designed

models. In order to execute the model in real-time, RTW and an installed C/C++ compiler is used

to generate executable code which can then be run in real time with Simulink in external mode.

The built-in functionality of RTW compiles the Simulink model down to C code, and then builds a

native executable file [322, 323, 324].

RTWT uses a small real-time kernel to ensure deterministic sampling rate in the application.

During operation, the real-time kernel runs at CPU ring zero (privileged or kernel mode) and uses

the PC clock as its primary source of time. The scheduler in RTWT allows one to work with a single

sample rate or with multiple and potentially different sampling rates in a model. In RTWT, each

sampling rate is defined as a task and is clocked by the scheduler that runs the executable. RTWT

supports up to a maximum of 32 tasks, and faster tasks have higher priority. For non-real time

simulation which is done in the normal mode, Simulink uses a computed vector to step a designed

model. On the completion of output computation for a given time value, computations for the next

time value is repeated. This process continues till the stop time is reached. Since the computed time

vector is not connected to a hardware clock the computation is done in non-real time and typically

performed as fast as the computer can run. On the other hand, for real-time execution, which is done

120

133

in external mode, RTWT uses interrupts to step the designed application in real time at the proper

rate [322, 323].

The experimental evaluations for PBASC were performed using RTWT’s real-time execution in

external mode. The serial communication options in the Packet-In and Packet-Out blocks from the

RTWT library were used to locally interface with the robotic manipulator via the dynamixel con-

troller. For the communication between C1 and C2, through which the remote plant and controller

exchange wave variables, the UDP options of the Packet-In and Packet-Out blocks were utilized.

5.6.3 Results

5.6.3.1 Experiment 1: Nominal Case

In this experiment, we consider nominal network condition whereby the remote plant and the net-

worked controller exchange information over 100 BASE-TX Ethernet network without any addi-

tionally introduced network uncertainties. For the nominal case we perform two experiments, one

based on a fixed sampling interval, denoted FSP, and the other based on our proposed PBASC frame-

work. The experiments are performed using the setup as described in Section 5.6.1. Figures 41a

and 41b show the reference and actual trajectories of joint 2 of the robotic manipulator for both

the PBASC and FSP approaches while Figures 41c and 41 show the sampling interval for each

corresponding approach. A reference input or bias of 0.2 rad is introduced at the networked con-

troller between 5s and 9s. This can be clearly see from the trajectories for both approaches and

after the bias is removed the joint again starts to follow the local reference trajectory. Based on

the plots, the robotic manipulator was able to track the reference trajectories for both the FSP and

PBASC approaches with a little noticeable error. From the sampling interval plots, one can clearly

observe the benefits of the PBASC approach, while the FSP requests controller updates at a fixed

sampling interval of 46ms, PBASC’s controller update requests are based on the tracking error. For

the 20s experiment, the FSP requested a total of 434 controller updates compared to PBASC’s 329

controller update requests.

121

134

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0

Time(s)

Jo
in

t A
ng

le
 (

ra
d)

Reference and Joint Trajectories

Reference
Joint 2

(a) PBASC Trajectory.

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0

Time(s)

Jo
in

t A
ng

le
 (

ra
d)

Reference and Joint Trajectories

Reference
Joint 2

(b) FSP Trajectory.

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

S
am

p
lin

g
 T

im
e(

s)

Time(s)

Plot of the Sampling Intervals

(c) PBASC Sampling Intervals.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

S
am

p
lin

g
 T

im
e(

s)

Time(s)

Plot of the Sampling Intervals

(d) FSP Intervals.

Figure 41: Experimental Results - PBASC Approach vs. FSP Approach in Nominal Case.

5.6.3.2 Experiment 2: Persistent Link Interruption

In this experiment, we illustrate, the robustness of the proposed PBASC framework to network

uncertainties. We introduced a Boolean variable in order to artificially model link disruption or

interruption by toggling the variable. During the time interval from 6s to 7s, we interrupted the

link from the controller to the plant using the toggle block. From Figure 42a, one can observe that

the system still maintains stability, the joint resorts intermittently to tracking the local reference

and when the link is reestablished the joint goes back to tracking the modified reference trajectory

with the introduced networked reference. Figure 42 shows the sampling interval clearly showing

increased sampling during the intervals of larger error.

122

135

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0

Time(s)

Jo
in

t A
ng

le
 (

ra
d)

Reference and Joint Trajectories

Reference
Joint 2

(a) PBASC Trajectory(Persistent Link Interruption).

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

S
am

p
lin

g
 T

im
e(

s)

Time(s)

Plot of the Sampling Intervals

(b) Sampling Intervals (Persistent Link Interruption).

Figure 42: Experimental Results - PBASC Approach with Link Interruption.

5.6.3.3 Experiment 3: Intermittent Wireless Connection

In this experiment, we evaluate the impact of unreliable wireless network on the proposed approach.

For this experiment, instead of the wired network used in the two previous scenarios, we switched to

wireless communication. Specifically, we disconnected the wired communication for C2, the com-

puter running the networked controller, and connected to the Ethernet network through an 802.11b

wireless connection for information exchange with, C1, the computing unit running the remote

robot. Figure 43a and 43b shows the joint 2 trajectory and sampling intervals respectively. Even

with the wireless communication the robot still achieves tracking with reduced sampling interval

compared to the FSP approach.

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0

Time(s)

Jo
in

t A
ng

le
 (

ra
d)

Reference and Joint Trajectories

Reference
Joint 2

(a) PBASC Trajectory(Intermittent Wireless Connection).

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

S
am

p
lin

g
 T

im
e(

s)

Time(s)

Plot of the Sampling Intervals

(b) Sampling Intervals (Intermittent Wireless Connection).

Figure 43: Experimental Results - PBASC Approach with Intermittent Wireless Connection.

123

136

5.7 Summary

In this chapter, an integrated passivity-based adaptive sampling control architecture for trajectory

tracking is introduced. The approach integrates passivity and adaptive sampling to address the chal-

lenges of guaranteeing stability in the presence of network uncertainties and efficiently utilizing

limited network resources while at the same time achieve a trajectory tracking objective. Simula-

tions and experimental results are presented for a case study involving the trajectory tracking control

of a robotic manipulator over a network in the presence of network uncertainties. Compared to the

fixed sampling approach, the adaptive sampling framework utilizes the network resources more

efficiently which is very desirable especially in the case of limited resources.

124

137

CHAPTER 6

INTEGRATED MODELING AND SIMULATION OF NETWORKED CONTROL SYSTEMS

6.1 Introduction

NCS are typically designed based on simplifying assumptions on the network, specifically in re-

gards to their network operating environment (e.g. time-varying delays and packet losses). These

assumptions, although they make the analysis of NCS tractable, often do not fully represent the real

network dynamics. Such limitations can lead to catastrophic consequences when the actual sys-

tems are deployed, as the overall system behavior depends on network dynamics and uncertainties.

As described in Chapter 2, numerous techniques aim to formally analyze NCS properties such as

stability, performance, safety, and security but as NCS become increasingly complex, it becomes

more challenging to formally analyze these properties. As a result, there is a pressing need to eval-

uate both the control system and the networking system together for a rapidly growing number of

applications, such as unmanned aerial vehicles (UAVs) and industrial control systems. Simulation

is a powerful technique for evaluation and can be used at various design stages, but it requires the

support of appropriate tools during the design-time and run-time stages in order for the process to

be efficient and less prone to errors.

Currently, several simulators have been used for simulating NCS but have limited capabilities.

For example, Matlab/Simulink is a very popular tool to model and evaluate the performance of

control systems [173]. Although network simulation is provided in Matlab/Simulink using add-

ons such as TrueTime [325], the accuracy of the simulation depends on the level of abstraction of

the network protocol models. Specifically, the network protocol in TrueTime only supports link

layer protocols but not higher level protocols such as TCP or UDP protocols, which are essential

for simulating the communication network of a NCS. Packet-level network simulators such as ns-

2 [170], provide a detailed implementation of the network stack for packet level data transmission.

Yet, using ns-2 only for NCS evaluation requires the control algorithm to be fully implemented

in a high-level language such as C++. This becomes very difficult as the complexity of the NCS

increases. In order to develop a realistic and accurate simulation of NCS, we need a modeling and

125

138

simulation environment that can integrate existing tools for the accurate simulation of the control

dynamics as well as the networking system of a NCS. The challenge faced by these tools is the

ability to precisely model the both dynamical system and the network stack in order to simulate

NCS.

The integration of existing tools for the accurate simulation of NCS, although very beneficial,

faces several challenges. The first challenge is the design-time scalability of modeling NCS which

involves the ability to rapidly design and model NCS of various complexity and size. The second

challenge is time synchronization of the heterogeneous simulation components during execution.

Given that the simulators operate in potentially different time scales using disparate time models,

time synchronization between the simulators is critical to preserve the correctness of the simulation.

The third challenge involves the data communication between the simulators to ensure consistent

data semantics during the simulation. Finally, the fourth challenge involves the run-time scalability

which is the ability of the simulation environment to handle the simulation of large and complex

NCS.

In this chapter, in order to address these challenges, we present an integrated modeling and sim-

ulation tool for NCS, called the Networked Control Systems Wind Tunnel (NCSWT), which com-

bines the network simulation capabilities of ns-2 with the control design and simulation capabilities

of Matlab/Simulink. NCSWT addresses the challenge of design-time scalability of modeling NCS

described previously by adopting Model Integrated Computing (MIC) [326]. MIC is an approach

for the development of complex software systems, applicable in all phases - analysis, design, im-

plementation, testing, maintenance and evolution. The key idea in MIC is to create domain-specific

modeling languages (DSMLs) using a meta-modeling framework and then describe objects in terms

of the domain-specific models. These models are formally represented and can be checked for cor-

rectness against pre-specified design rules and can be programmatically traversed and transformed

to produce/or modify code and other engineering artifacts. Often, these models are transformed

into alternate but equivalent representations, which can be used by external analysis and simulation

tools to verify certain properties of the system [326]. We present three domain specific modeling

languages (DSMLs), the NCSWT model integration language (NCSWT MIL), the Control Design

Modeling Language (CDML) and the Network Design Modeling Language (NDML). The DSMLs,

developed using the generic modeling environment (GME) [310], facilitate the rapid design and

126

139

modeling of NCS. In addition, the DSMLs and the NCSWT framework are designed to ensure the

consistency of data semantics among the simulators used in the simulation of a NCS.

NCSWT addresses the challenges involving time synchronization and data communication by

adopting the High Level Architecture (HLA) for the implementation of the simulation environment

framework [184]. HLA is a standard for simulation interoperability that allows independently de-

veloped simulations, each designed for a particular problem domain, to be combined into a larger

and more complex simulation. In HLA, the independent simulators are known as federates and the

larger simulation formed by the interconnection of the federates is known as the federation. The

HLA standard provides a set of services to accurately handle time management and data distri-

bution among the heterogeneous simulators. In our framework, we utilize the time management

services provided by the HLA to ensure that the time model in the control system simulated in

Matlab/Simulink and the time model in the networking system simulated in ns-2 are synchronized.

We also utilize the data distribution services to ensure the correct exchange of data between the

simulations of the control dynamics and communication network of a NCS.

Additionally, we provide case studies to evaluate the tool. The first case study involves an

unmanned aerial vehicle which is remotely controlled over an 802.11b wireless network to follow a

given reference trajectory. This case study is used to demonstrate the use of the NCSWT to evaluate

the impact of network effects, such as packet loss, time-varying delays and multi-hop topologies,

on a safety critical system. The second NCS case study is an industrial control system involving a

network of three plant and controller pairs sharing a wireless communication channel and operating

at different sampling rates. This case study is used to demonstrate the convenience and scalability

of NCSWT tool in handling NCS of different complexities in time and size.

In Chapter 2, we described several efforts have been made toward integrating multiple simula-

tors in order to effectively simulate NCS. In contrast to these efforts, our proposed approach provides

a model-based framework that tightly integrates the design of the control system and communication

network in NCS providing a well-defined abstraction of the information exchange between the two

design views. Also, our integration approach uses a standard based on the HLA for the integration

of heterogeneous simulators which assures that the integration of our tools enforces the HLA time

synchronization and data communication standards. The rest of the chapter is organized as follows.

Section 6.2 provides an overview of the NCSWT. Section 6.3 presents the model-based design and

127

140

Table 4: Acronyms
NCS Networked Control Systems
HLA High Level Architecture
MIC Model Integrated Computing
DSML Domain Specific Modelling language
NCSWT Networked Control Systems WindTunnel
MIL Model Integration Language
CDML Control Design Modelling language
NDML Network Design Modelling language
TAG Time Advance Grant
TAR Time Advance Request
NER Next Event Request

integration of NCS using the NCSWT tool. Section 6.4 describes the NCSWT run-time compo-

nents. Section 6.5 presents the implementation overview of the NCSWT tool. Section 6.6 presents

the cases studies. Section 6.7 provides an evaluation of the NCSWT and finally Section 6.8 provides

a summary of the chapter. For ease of readability, a list of the main acronyms used throughout this

chapter is provided in Table 4.

6.2 Overview of the NCSWT

An overview of the NCSWT architecture is shown in Figure 44. The architecture is composed of

two main parts, the design-time models and the run-time components. The design-time models

are used to define the NCS and its components in order to enable the realization of a HLA-based

simulation of the NCS. The design-time models are defined by three domain specific modeling

languages (DSMLs), the NCSWT Model Integration Language (NCSWT MIL), the Control De-

sign Modeling Language (CDML) and the Network Design Modeling Language (NDML). These

DSMLs, developed using the MIC approach [326], use abstractions to define the NCS in specific

modeling domains to enable the rapid modeling and design of NCS for simulation. The design-time

models constructed from these DSMLs generate software components, interface glue code and con-

figuration files for the NCS which is deployed and executed at run-time. The run-time components

represent the main software components and interfaces for the actual simulation of the NCS using

the HLA framework. These components include the Run-Time Infrastructure (RTI), the federates,

the simulators (Matlab/Simulink and ns-2) and all the necessary configuration and interface scripts

generated from the design-time models. These components also include the monitoring tools for

128

141

Figure 44: Overview of NCSWT

visualizing and evaluating the results.

A detailed description of the design-time modeling framework and the run-time execution frame-

work are presented in Section 6.3 and Section 6.4 respectively.

6.3 Model-Based Design and Integration

In order to facilitate the rapid generation and simulation of NCS with minimal effort, we employ

Model Integrated Computing (MIC) techniques [326]. We define meta-models for three domain-

specific modeling languages (DSMLs) for modeling and integrating the NCS in the HLA frame-

work. The DSMLs are:

1. NCSWT Modeling Integration Language (NCSWT MIL)

2. Control Design Modeling Language (CDML)

3. Network Design Modeling Language (NDML)

129

142

NCSWT MIL is an extension of the Base HLA Meta-Language [186]. Before we provide a descrip-

tion of each of the DSMLs, we provide a background of the Base HLA Meta-Language.

6.3.1 Base HLA Meta-Language

The Base HLA Meta-Language is a DSML which provides a graphical environment for designing

and deploying heterogeneous simulations using model-based design techniques [186]. This DSML

provides all of the modeling primitives required to specify the integration, deployment, and execu-

tion of a federated simulation. Once the integration model has been defined for a given environment,

a set of reusable model interpreters are executed to automatically generate engine-specific glue code

and all deployment and execution artifacts. All generation and deployment steps directly rely upon

the initial integration model. Figure 45 shows the primary portion of the Base HLA Meta-Language

Figure 45: Base HLA Meta-Language

130

143

DSML, specified using GME, that defines the composition elements. The three primary elements

in a federation (defined by the model FOMSheet) are Interaction (on right-hand side of Figure 45),

Object (on the left-hand side), and Federate (in the center), representing a HLA-interaction, HLA-

object, and a HLA-federate respectively. The proxy elements are simply references to their re-

spective target model elements and are used in place of their targets to simplify the presentation of

the model. The Federate element directly corresponds to any single instance of a simulation tool

involved in the federation. As defined by the HLA standard [184], federates in a federation com-

municate among each other using HLA-interactions and HLA-objects, both of which are managed

by the RTI. Interactions and objects, in an analogy with interprocess communications in operating

systems, correspond to message passing and shared memory respectively.

In Figure 45, the ParameterType attribute on the Parameter and Attribute elements defines the

data type of that element (i.e. float, int, string). The Interaction and Attribute elements also support

the HLA-defined attributes of Delivery and Order [184]. The primary attribute of a federate, as far

as HLA-based synchronization is concerned, is its Lookahead, the interval into the future during

which that federate guarantees that it will not send an interaction or update an object. The Federate

as shown in Figure 45 can correspond to various types such as Java, C++, Matlab/Simulink etc. The

language elements StaticInteractionPublish, StaticInteractionSubscribe, StaticObjectPublish, and

StaticObjectSubscribe, represent primitives necessary to model federates publishing and subscribing

interactions, objects, and attributes [186]. A detailed description can be found in [186][327][328].

With these elements a designer is able to completely specify the integration model of the entire

federation and its constituent simulation engines.

6.3.2 NCSWT Model-Based Approach

The NCSWT MIL is an extension of Base HLA Meta-Language. The major extensions are the

following:

1. We introduced a new federate to model the ns-2 simulator in the HLA framework and we

extended the existing Matlab federate in the Base HLA Meta-Language to specifically capture

the design of a NCS.

2. We also introduced new interactions to specifically describe the exchange of information in

131

144

NCS.

3. We developed two additional DSMLs that refine the NCS base model from NCSWT MIL

by providing specific modeling concepts to model the dynamics of the control design and

network design of the NCS.

4. We also provide model interpreters that automatically generate deployable system models for

the control design and network design as well as glue code for run-time execution from the

DSMLs.

Figure 46 shows the model-based design architecture for NCSWT. The figure shows the design-

time models used to define the NCS and its components using representative models in order to en-

able the simulation of a NCS. Figure 46 shows the three DSMLs, NCSWT MIL, CDML and NDML

utilized in our framework. The block “MATLAB control model” represents the Matlab/Simulink

control models which are provided as parameters in the CDML. Likewise, the block “ns-2 Topology

model” represents the network topology of the NCS provided as parameters in the NDML. From the

three DSMLs, a set of reusable model interpreters are used to generate system models, configuration

files, deployment models and interface scripts for the simulation of NCS. We provide a description

of the DSMLs, and we use an example NCS to define a model for each DSML.

6.3.2.1 NCSWT Model Integration Language

The NCSWT Model Integration Language (NCSWT MIL) provides the modeling primitives to

specify the NCS in terms of elements in the HLA framework, such as federates representing the

simulators, interactions representing the communication between the simulators, and parameters

exchanged in the interactions, in order to execute a HLA-based simulation. An instance model

created using NCSWT MIL is referred to as the base architecture of the NCS. The base architecture

defines the component of the NCS in terms of federates, interactions and the parameters. The

executables for configuring the run-time environment for a specific NCS are generated from the

base architecture model. The NCSWT MIL describes the tight coupling between the control and

network design views of the NCS by defining how the two design views interact. This tight coupling

ensures the consistency of the data semantics among the design views. Figure 47 shows the NCSWT

MIL meta-model.

132

145

Figure 46: Model-Based Design Architecture for NCSWT

Figure 47: NCSWT Meta Model

1. Federates: The federates shown in the NCSWT MIL meta-model represent the elements

for describing the simulators used in the NCS simulation based on the HLA framework. The

NCSWT MIL models two main types of federates: the ND federate and the CD federate.

(a) ND Federate: This federate models the software component for interfacing the network

133

146

layer simulator, ns-2, with the RTI.

(b) CD Federate: This federate models the software component for interfacing the control

layer simulator, Matlab/Simulink, with the RTI. The CD Federate extends the previously-

existing Matlab federate in the Base HLA Meta-language [327] with additional at-

tributes. The additional attributes AppID, AssociatedNodeId and AssociatedSystem are

used in the definition of parameters in the control and network layers of the NCS.

2. Interactions: In the HLA framework, the information exchanged between federates are

defined using interactions. In the NCSWT MIL, we introduce three main types of interactions

in order to capture the main type of information exchange that can exist in a NCS. The three

types of interactions that can be modeled in NCSWT MIL are Network interaction, Crosslayer

interaction, and Control Design interaction.

(a) Network Interaction: This interaction type enables the modeling of packets or infor-

mation exchanged between control design components over the communication net-

work. This includes, for example, the exchange of information between a plant and

controller through the communication network such as sending plant outputs to the con-

troller and sending control signals to the plant. In the NCSWT MIL, this interaction

type always occurs as a pair with one interaction acting as the source and the other act-

ing as the sink. The source interaction represents communication from a CD federate to

the ND federate while the sink interaction represents the communication from the ND

federate to another CD federate, which is the destination. This implies that a source

network interaction must have a corresponding sink interaction and vice versa.

(b) Crosslayer Interaction: This interaction type allows for the modeling of information

exchange between the network and application layers of a network protocol stack. It

models the local communication between control design components and their respec-

tive local network interface. A typical example of crosslayer interaction is when a con-

trol design component queries its network interface for current network condition such

as bit rate or loss rate etc. Such information can be used by the control design compo-

nent to evaluate the quality of service of the network in order to implement a desirable

control law or for other objectives.

134

147

(c) Control Design Interaction: This interaction type allows the modeling of the infor-

mation exchanged between control design components that are transmitted or received

by means other than the communication network. A typical example where this type of

interaction is needed is modeling a radar sensor on a UAV for detecting the proximity of

an obstacle or another UAV in its vicinity. This information is typically processed at the

application (control design) level without being sent over the communication network.

Example

We introduce a NCS example to illustrate the NCSWT MIL. Figure 48 shows a linear-time invariant

continuous plant controlled by a proportional derivative (PD) digital controller over a 802.11b wire-

less network. The objective of the NCS is for the plant to track a reference velocity profile based on

feedback information from the controller. The plant output is periodically sent to the digital con-

troller while the control law is periodically sent to the plant from the digital controller. Figure 49

Figure 48: Example Networked Control System

shows a model of the NCSWT MIL for the example scenario. The Plant and the Controller are

modeled as CD federates each representing an instance of the Matlab/Simulink simulation tool for

each component. The communication network is modeled as a ND federate representing the ns-2

simulator. The blocks PlantIn, PlantOut, ContIn and ContOut are network interactions represent-

ing the information exchange between the plant and the digital controller over the network. In this

example, the PlantOut, a source interaction, represents sensor information from the Plant, and Con-

tIn is the sink interaction that eventually receives the sensor information after it goes through the

network. Similary, the interaction ContOut is the source interaction representing the control signal

from the Controller and PlantIn is the corresponding sink interaction that eventually receives the

control signal after it goes through the network.

135

148

Figure 49: NCSWT Model

6.3.2.2 Control Design Modeling Language

The Control Design Modeling Language (CDML) defines the modeling elements for describing the

dynamic behavior of the system components of the NCS. Figure 50 shows the metamodel of the

CDML, which defines control design concepts representing the control design view of a modeled

NCS. The main components are the system type and the type of connection between system model

components in the NCS. The system type models the dynamical behavior of the components of the

Figure 50: Control Design Meta Model

136

149

NCS and can be modeled as one of three types.

1. Plant: This models the dynamics of the system to be controlled.

2. Controller: This models the control law or algorithm to modify the behavior of the plant to

behave in a desired manner.

3. Agent: This essentially models a dynamic component which can neither be categorized

specifically as a plant or a controller. For example, an UAV in a network of UAVs whose

individual behavior is controlled by its neighbors.

A model created from the CDML is a refinement of the base architecture model of a NCS, created

by the NCSWT MIL, with the details regarding the dynamics of the control system defined. In

order to ensure consistency with the base architecture model defined in the NCSWT ML, a model

transformation is used to transform a base architecture model directly to a base model in CDML.

Then the control design concepts in CDML are used to define the dynamics of the components in

the NCS.

It should be noted that CDML does not re-implement all of the Matlab/Simulink syntax and

blocks, it provides an interface for generating and building specified control design models based

on a user-defined library of Simulink blocks and inputs for a NCS. In CDML, a set of modeling

primitives and attributes such as Ts (Sampling Time), ModelName and ModelLibraryName etc., can

be used to specify the model and parameters that define the control system components. From the

defined parameters in CDML, an integrated interpreter in CDML generates Matlab code which when

executed builds the desired Simulink models for implementing the control system with integrated

HLA-based interfaces for run-time simulation in the HLA framework.

Example

In order to illustrate the CDML, we use the NCS example defined in Figure 48. Figure 51 shows

a model of the CDML describing the control design model of the example. Unlike the model, in

Figure 49, the Plant and Controller in this case represent the dynamics of the plant and the digital

controller respectively. Using a set of modeling attributes defined in CDML, a user can specify the

user-defined Matlab/Simulink model and parameters that define the dynamic behavior of a control

system component.

137

150

Figure 51: Control Design Model

6.3.2.3 Network Design Modeling Language

The Network Design Modeling Language (NDML) defines the modeling primitives for defining

the dynamics of the communication network. This includes the capacity, loss models, routing and

other additional properties to realize a desired networked control system. Figure 52 shows the

meta model of the network design modeling language. From Figure 52, the main components are

Figure 52: Network Design Meta Model

node, application, transport agent, link and the various connection types that exist between the

components.

1. Node The node component represents the host or a computing unit on which an particular

application (control design component) is running.

2. Application This models the actual application that runs at the top of the network stack. In

our case this is an abstraction of the control design components.

138

151

3. Transport Agent This models the protocols or agents for delivering messages from the ap-

plication layer of the source to that of the destination such as UDP or TCP.

4. Link This models the link layer of the network. It defines the path for delivering packets from

a source node to a destination node.

It should be noted NDML does not re-implement the ns-2 syntax and simulation semantics. NDML

essentially provides an interface language for defining the network interactions between the ns-2

simulation and the Matlab simulation. Examples of such interactions include the controller/plant

deployment on the network node, traffic types etc. The ns-2 syntax and semantics that are internal

to networking simulation (e.g., packet scheduling, routing) will not be reflected in NDML. We rather

rely on the TCL language of ns-2 for the network internal simulation configuration.

Similar to CDML, a model transformation is used to transform the base architecture model in

NCSWT MIL directly to a base model in NDML in order to preserve the consistency of the models

in the different design views. Then the network primitives defined in NDML are used to define the

network properties for the NCS. A user can then specify the transport agent, loss model of network

links and other various network properties to simulate the network dynamics. Run-time network

configuration and model scripts can then be generated using an integrated code generator in NDML

based on the defined model parameters for deployment in ns-2 for the execution of the NCS simu-

lation.

Example

In order to illustrate the NDML, we use the NCS example defined in Figure. 48. Figure 53 shows

a model of the NDML describing the network design model of the example. This model specifies

the transport agents, the network topology and other network properties required for the exchange

of information between the control design components over a network. Unlike the model shown in

Figure 49 and Figure 51, the Plant and Controller in this case represent the network applications.

The TPAgent1 and TPAgent2 represent the transport agent models attached to the network hosts,

Node1 and Node2 respectively. Using a set of modeling primitives and attributes in NDML, a user

can specify the loss model of network links to simulate the desired network dynamics.

139

152

Figure 53: Network Design Model

6.3.3 Design Flow for the NCSWT Model-Based Approach

Figure 54: Model-Based Design Flow for NCSWT

Figure 54 shows the design flow for the NCSWT model-based approach. The number depicted

on the bottom right of each of the blocks represents the design stage of the model-based approach.

140

153

• Step 1: In this step, a user defines the NCS to be simulated in the NCSWT MIL using HLA

concepts that capture the control components and network components of the NCS as well

as the information flow between the components. Using a set of integrated interpreters, two

model transformations are executed on the NCSWT MIL to generate a CDML model and

a NDML model for the definition of the control design and network design components.

Additionally, configuration scripts and glue code required for the run-time simulation of the

NCS are also generated from the NCSWT MIL model.

• Step 2: In this step, a user designs the control components of the NCS in Matlab/Simulink.

Each individual component of the NCS that is to be simulated separately is stored in a user

defined library. The reference name of the component model and the library name in which

it is stored are used in the CDML. If the control component is a standard Simulink block that

can be located in the Simulink library, the user determines the reference name of the block in

the library as this is used in the CDML in order to build the NCS model.

• Step 3: Depending on the complexity of the network, a user can specify a network topology

of the NCS in ns2 using a third-party tool such as GT-ITM for realistic Internet topology

generation [329]. The reference name of this topology can be provided as an input to the

NDML. Alternatively, a medium sized network topology can be modeled directly in NDML.

• Step 4: This step involves the modeling of control components using CDML. In CDML,

starting from the transformed model from the NCSWT MIL, each of the control design com-

ponents are captured through the use of attributes defined in the CDML. These attributes

specify the user library containing the control component Simulink models as well as the

reference block names for the components created in Step 2. An integrated interpreter tra-

verses the CDML instance model and generates Matlab code which when executed generates

Matlab/Simulink models for the control design components integrated with the HLA-based

interfaces required for the NCS simulation.

• Step 5: In the NDML, starting from the transformed model from the NCSWT MIL, a user

specifies the network components such as the transport agent, node and application agents for

the NCS. These components together with their parameterized attributes capture the under-

141

154

lying network communication features for the NCS. A set of integrated interpreters traverses

the model and generates tcl for the NCS model. Also, the HLA-interface scripts required for

the integration of ns2 for the run-time simulation is also generated file.

• Step 6: The final step involves the deployment of the generated models, glue code and con-

figuration files from the subsequent steps in the run-time environment to facilitate the actual

simulation of the NCS using our framework.

6.4 NCSWT Run-Time Components

The Run-Time components of the NCSWT are shown in Figure. 55. These components represent

the main software components and interfaces for the realization of a NCS simulation using the HLA

framework. These components include the simulators (Matlab/Simulink and ns-2), the Run-Time

infrastructure (RTI), the federates, and all the necessary glue code for the interfaces as well as

monitoring tools for visualizing and evaluating the results.

Figure 55: Run-Time Components

6.4.1 Run-Time Infrastructure (RTI)

The RTI, an implementation of the HLA standard, manages the communication between different

federates. Using interactions, federates communicate between each other through the RTI [330].

The RTI handles the coordination of time and data passed between federates. A number of commer-

cial and academic RTI implementations are available. Currently, we use Portico version 1.0.2, an

open source cross-platform HLA implementation, which supports both C++ and Java clients [330].

Each federate has a single point of contact to the RTI through which it can communicate with

other federates. Each federate represents a single instance of the corresponding simulator’ interface

142

155

to the RTI. For example, the ND federate is a software component that interfaces the ns-2 simulator

with the RTI. The RTI provides a set of programmable application interfaces to instantiate a federate

and for the federate to communicate with the RTI.

We briefly describe the NCSWT run-time services provided by the RTI.

6.4.1.1 Time Management

In an HLA-based federation, each federate has its own logical time. The RTI preserves the causality

of the federation by ensuring that no simulation receives an event that occurred in the past relative

to its own logical time. The RTI ensures the accurate progression of time through the use two main

basic operations, the time advance request (TAR) and the time advance grant (TAG). In order for a

federate to progress its logical clock during a simulation run, it must send a TAR to the RTI which

then determines based on the current clocks of all the other federates in the federation whether to

send a TAG for the federate to proceed. The RTI chooses the smallest of all the federates’ TAR

times, if a federate TAR time is larger than the granted TAG, it will block and it will only proceed

its simulation when its TAG is successful [331].

6.4.1.2 Data Communication and Coordination

The RTI uses a publish-and-subscribe mechanism for passing messages through the federation in

order to ensure the accurate data communication and coordination between the federates [331].

The type of messages exchanged between the federates are determined by the interactions and the

interaction parameters defined in the NCSWT MIL. In the publish-and-subscribe mechanism, the

sender of the interaction, known as the publisher, publishes the interactions to the RTI making it

available to any receiver, known as the subscriber, registered to receive those kind of interactions.

The RTI assures timely delivery of the interactions to all subscribing federates.

In addition to these services, in our framework the RTI provides additional services for moni-

toring the progression of a simulation during run-time.

6.4.2 Federates

In order to participate in a federation, the ND and CD federates utilize the services provided by the

RTI. We briefly discuss how each of the federates utilize these services.

143

156

6.4.2.1 ND Federate

In order to participate in a federation, a ND federate, which interfaces the communication network

simulated in ns-2 to RTI, leverages a set of generic classes defined by completely reusable C++

code. The reusable C++ code provides all of the fundamental RTI integration requirements such

as converting between ns-2 defined types and RTI types, encapsulating and interfacing with the

RTI for initializing the federate, synchronizing the simulator’s clock and managing the publish-and-

subscribe relationship with other federates.

The design-time models facilitate the integration of the ND federate in an HLA based federation.

In our framework, a ND federate can be defined in the NCSWT MIL model, along with all its

associated interaction types and parameters. This definition directly integrates the network design

components simulated in ns-2 with an HLA-federation. From the NCSWT MIL, a GME interpreter

is used to generated C++ files used during the run-time simulation of the NCS. The generated files

leverage the reusable generic C++ classes together with the integrated interactions and parameters

specification for the ND federate defined in the NCSWT MIL in order to participate in a federation.

Figure 56 shows a time synchronization example with the ND federate. Because the ns-2 sim-

ulator uses a discrete event model of computation, time synchronization can be incorporated along

with event scheduling. In particular, the C++ source code for the ns-2 simulator scheduler is modi-

fied to implement the time synchronization mechanism defined by the RTI. The scheduler blocks the

scheduling of new events until it receives an adequate time advance grant (TAG) from the RTI. The

ns-2 scheduler submits a time advance request (TAR) once it is ready to execute an event scheduled

for at a time later than the latest TAG. An initialization TAR is passed from ns-2 to the RTI, and

once a TAG is received, the ns-2 scheduler can unblock and run until it reaches a synchronization

event (an operation requiring synchronization with the RTI). At that point, a TAR is submitted to the

RTI and ns-2 blocks. It is possible that the newest TAG will be less than the most recent TAR (i.e.

t2 < t1), so ns-2 only executes events scheduled for times less than or equal to the latest TAG. Since

our modification is made to the base class scheduler, our approach naturally supports the different

types of Calendar Schedulers that are available in ns2.

For the ND federate’s data communication, the communication network simulated in ns-2 uses a

set of function calls defining the interactions associated with the federate, together with the reusable

144

157

Figure 56: Time synchronization between the NS-2 federate and the RTI

generic C++ classes to send and receive interactions using the publish and subscribe mechanism

provided by the RTI. The function calls are generated from a set of GME interpreters integrated in

the NCSWT MIL and NDML. The interactions, which are modeled in the NCSWT MIL, represent

the data exchanged between the ns-2 simulator and Matlab/Simulink.

6.4.2.2 CD Federate

In order to participate in a federation, a CD federate, which interfaces the control design compo-

nents simulated in Matlab/Simulink to RTI, leverages a set of generic classes defined by completely

reusable Java code. The reusable code provides all of the fundamental RTI integration requirements

such as converting between Matlab/Simulink types and RTI types, encapsulating and interfacing

with the RTI for initializing the federate, synchronizing the simulator’s clock and managing the

publish-and-subscribe relationship with other federates [186].

In our framework, a CD federate can be defined in the NCSWT MIL model, along with all its

associated interaction types and parameters. This definition directly integrates the control design

component simulated in Matlab/Simulink with a HLA-federation. From the NCSWT MIL, a GME

interpreter is used to generated Java and Matlab/Simulink files used during the run-time simulation

of the NCS. The generated files leverage the reusable generic classes [186], together with the in-

tegrated interactions and parameters specification for the federate defined in the NCSWT MIL, in

order to participate in a federation.

The time synchronization mechanism for the CD federate is simulated in Matlab/Simulink us-

ing a Simulink S-function block integrated in Simulink model of each control design component.

145

158

Each control design component, using function calls in the S-function blocks, implements the time

synchronization mechanism provided by the RTI [186]. These function calls implement the TARs/-

TAGs mechanism for each of the Matlab/Simulink component. Using these function calls, the

component can request the advancement of the simulator’s logical clock and Using these function

calls, the component can request the advancement of the simulator’s logical clock and the simula-

tor’s execution is allowed to proceed only when the RTI grants the advancement of the simulator’s

logical clock.

For a CD federate, each corresponding control design component also uses the Simulink S-

function block to either publish or subscribe interactions in order to send or receive data. The

control design component, using function calls in the S-function blocks, implements the sending or

receiving of interactions from the RTI.

The CDML modeling language, automatically generates the Simulink model for the correspond-

ing control design component with the integrated blocks containing the S-function calls for imple-

menting the data communication and time synchronization mechanisms.

6.5 Implementation Overview

The NCSWT tool is intended to provide users with a flexible, extensible and convenient tool for

simulating NCS. The simulation of a NCS using the NCSWT tool requires two major steps. The first

step involves the modeling of the NCS and the generation of all the necessary models, configuration

scripts and glue code for the simulation of the NCS. The modeling of the NCS is performed in GME

using the three DSMLs discussed in Section 6.3. The modeling and code generation is performed

on a computer running a Windows operating system. The second step involves the deployment of

the generated code and models and the execution of the simulation. The simulation is executed on

a computer running a Linux operating system. Figure 57 shows pictorial representation of NCSWT

Implementation for the described simulation steps.

6.6 Case Studies

We present two case studies to demonstrate our tool as well as show how it can be used to eval-

uate the impact of network effects such as time-varying delays and packet losses on the overall

146

159

Figure 57: NCSWT Implementation Overview

performance of a NCS.

6.6.1 Networked Unmanned Aerial Vehicle

This NCS is comprised of an unmanned aerial vehicle (UAV) [14] controlled by a proportional

derivative (PD) digital controller over a 802.11b wireless network. The networked digital con-

troller, a proportional-derivative (PD) controller, is designed to enable the UAV to track a desired

reference position trajectory. The main objective of this case study is to demonstrate the use of

the NCSWT tool to simulate the impact of various network effects on the NCS. The UAV and the

digital controller are modeled in Matlab/Simulink while the wireless network is modeled in ns-2.

We consider three main scenarios: (1)Nominal case, (2) Scenario with a lossy network, (3) Scenario

where multi-hop relay is employed for packet delivery. Figure. 58, shows the design-time models

for the Networked Aerial Vehicle.

6.6.1.1 Nominal Case

In this experiment, we simulate the NCS composed of the UAV and a digital controller communi-

cating through a single hop wireless network. The UAV and the networked controller are located

within the transmission range of each other and there are no additional network effects such as

packet losses and delays. The sampling period of the networked controller is 0.1 seconds. Fig-

ure 59(a) shows a plot of the UAV x and y positions as well as the reference position trajectory. The

plant tracks the reference trajectory so closely that the difference is imperceptible in the figure. Fig-

147

160

(a) NCSWT MIL Model (b) CDML Model

(c) NDML Model

Figure 58: Design-Time Models for Networked Aerial Vehicle.

ure 59(b) shows the end-to-end delay plot for the Nominal case with the sampling period denoted

by the horizontal line at 0.1s. It can be seen that the delay is much less than the sampling period, so

it is to be expected that the plant is able to follow the reference signal closely.

6.6.1.2 Scenario with a Lossy Network

Wireless network communication can be unreliable, so in this experiment we demonstrate the im-

pact of packet losses on the performance of the NCS when packets are lost in the communication

channel of the network. We simulate a lossy communication channel based on a uniform probability

distribution [332]. The results for the loss rates of 20% and 40% are presented in Figure 60. As the

loss rate increases, the UAV trajectory strays further from the reference trajectories as can observed

148

161

0 10 20 30 40 50 60 70 80 90 100

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

P
o

s
it
io

n
 (

m
)

Plant x−position
Plant y−position
Reference x−position
Reference y−position

(a) UAV and Reference Trajectories.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100

D
e
la

y
(s

)

Time(s)

(b) End-to-End delay plots

Figure 59: Plots for the nominal case of the Networked UAV.

in Figure 60 which would be expected.

0 10 20 30 40 50 60 70 80 90 100

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

P
o

s
it
io

n
 (

m
)

Plant x−position
Plant y−position
Reference x−position
Reference y−position

(a) Output plot for 20% loss rate.

0 10 20 30 40 50 60 70 80 90 100

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

P
o

s
it
io

n
 (

m
)

Plant x−position
Plant y−position
Reference x−position
Reference y−position

(b) Output plot for 40% loss rate.

Figure 60: Plots of UAV trajectory for packet loss rates.

6.6.1.3 Scenario where multi-hop relay is employed for packet delivery

The direct connection of two nodes in wireless networks requires the two nodes to be within the

transmission range of each other however, this may not always be possible. In order to enable the

communication of two nodes that are outside of each other’s transmission range, intermediate nodes

can act as relays to route the packets to their final destination nodes. Such network architecture are

called wireless multi-hop networks. We use a chain topology with a static routing protocol to test

the multi-hop scenario for the Networked UAV NCS. In this topology, nodes are formed in a chain

149

162

structure with a fixed distance of 200m between neighboring nodes. The plant node and controller

node are located at the edges of the network such that they will need to transmit information through

intermediate nodes.

Figure 61, shows the simulation results for three and five chain networks. From Figure 61, it

can be seen (especially at the beginning of the trajectory plots) that as the number of hops increase,

the UAV trajectory deviates further away from the reference trajectory due to the increased delay

introduced by the number of hops between the plant and controller nodes.

0 10 20 30 40 50 60 70 80 90 100

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

P
o

s
it
io

n
 (

m
)

Plant x−position
Plant y−position
Reference x−position
Reference y−position

(a) Output plot for Three hops.

0 10 20 30 40 50 60 70 80 90 100

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

P
o

s
it
io

n
 (

m
)

Plant x−position
Plant y−position
Reference x−position
Reference y−position

(b) Output plot for Five hops.

Figure 61: UAV trajectory for multi-hop communication.

6.6.2 Industrial Networked Control System (INCS)

In this case study we demonstrate the ability of the NCSWT to handle asynchronous sampling

times in large systems. Systems with asynchronous sampling rates can cause resource contention

problems for the communication channel, so it is very important to accurately model the behavior.

Additionally, since NCS can potentially be large in size it is also very important that the tool is

able to handle NCS of varying sizes. By using the HLA communication standard, the NCSWT

simulation tool appropriately handles the simulation of large NCS with various sampling rates as

described in Section 6.4.

This case study is a typical industrial networked control system. It involves the simulation

of three networked control systems working concurrently over the same wireless network. The

networked control systems are denoted NCS1, NCS2 and NCS3, and they execute with the sampling

150

163

times 0.1s, 0.15s and 0.25s respectively. Each of the networked control systems is composed of a

plant system and a proportional derivative (PD) controller that controls the corresponding plant to

behave in the desired manner. NCS1 is composed of the plant system P1 and controller C1; NCS2

is composed of the plant system P2 and controller C2 and NCS3 is composed of the plant system P3

and controller C3. The model for each of the plant systems, P1, P2 and P3, is an industrial robotic

arm. The model for each of the controllers C1, C2 and C3 is identical except for the different

sampling times. We consider two scenarios: (1) Nominal case, (2) Scenario with network effects.

Figure 62, shows the design-time models for the INCS.

6.6.2.1 Nominal Case

In this experiment, the three NCS are operating in a single-hop network without any additional

network effects such as packet losses and delays. All six nodes use the same network channel. The

reference trajectories for this experiment are essentially identical to the reference trajectory in the

single UAV networked system in Section 6.6.1. Figure 63 shows the end-to-end delay plots. The

horizontal red line in each plot indicates the sampling time for each plant-controller pair. It can be

seen that the delays for each of the NCS are less than their corresponding sampling period.

6.6.2.2 Scenario with network effects

We simulate background traffic and packet loss in the wireless network to evaluate their impact of

network effects on the overall performance of the INCS. Two nodes were introduced in the network

to simulate background traffic while a uniform probability loss model [332] was used to simulate

packet loss in the communication channel. Figure 64 shows a plot of the outputs of the plants

showing the effect of the background traffic in addition to a 30% loss rate. It can be seen that the

simulated network effects affect the outputs of the plants as depicted by degraded performance in

tracking the reference trajectories. Figure 65 presents the network delay for packets transmitted

between the plant and the controller for each of the three NCS. In the delay plots in Figure 65, the

horizontal red line in each plot indicates the sampling time for each plant-controller pair. The figure

shows similar delay for most of packets in the system, and this is reasonable since all the six nodes

share the same network channel and therefore contend for network resources.

151

164

(a) NCSWT MIL Model

(b) CDML Model

(c) NDML Model

Figure 62: Design-Time Models for INCS.

6.7 Evaluation

In order to build the NCSWT tool, the software packages shown in Table 5 are needed. Mat-

lab/Simulink and ns-2 are used for the simulation of the control system and communication net-

work of the NCS respectively. Portico 1.0.2 is the RTI implementation of the HLA used for running

the federation. GME is the graphical environment used for the modeling and generation of all the

necessary components for the simulation of the NCS. Universal Data Model (UDM) is utilized in

152

165

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0 20 40 60 80 100
D

e
la

y
(s

)
Time(s)

Pair 1, sample time 0.10s

(a) Delay plot for P1-C1 pair

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0 20 40 60 80 100

D
e
la

y
(s

)

Time(s)

Pair 2, sample time 0.15s

(b) Delay plot for P2-C2 pair

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0 20 40 60 80 100

D
e
la

y
(s

)

Time(s)

Pair 3, sample time 0.25s

(c) Delay plot for P3-C3 pair

Figure 63: End-to-End delay plot for the nominal case scenario of INCS.

the model transformations from the NCSWT MIL to CDML and NDML. Microsoft Visual Studio

is used for the execution of the code generators and model transformations from the three DSMLs.

Eclipse is used for the compilation of the run-time components required for the simulation. The

software packages ns-2, Portico 1.0.2, GME, UDM and Eclipse are freely available, while Mat-

lab/Simulink and Microsoft Visual Studio are proprietary tools.

Table 5: Required Software Packages
1. Matlab/Simulink, www.mathworks.com
2. ns-2, http://isi.edu/nsnam/ns
3. Portico 1.0.2, www.porticoproject.org
4. Generic Modeling Environment (GME),
www.isis.vanderbilt.edu/Projects/gme
5. Universal Data Model (UDM),
http://www.isis.vanderbilt.edu/tools/UDM
6. Microsoft Visual Studio 2008 or later,
www.microsoft.com/visualstudio
7. Eclipse, www.eclipse.org

153

166

0 10 20 30 40 50 60 70 80 90 100

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

P
o

si
tio

n
 (

m
)

P1 x−position
P1 y−position
Reference x−position
Reference y−position

(a) Output plot for Plant P1.

0 10 20 30 40 50 60 70 80 90 100

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

P
o

si
tio

n
 (

m
)

P2 x−position
P2 y−position
Reference x−position
Reference y−position

(b) Output plot for Plant P2.

0 10 20 30 40 50 60 70 80 90 100

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

P
o

s
it
io

n
 (

m
)

P3 x−position
P3 y−position
Reference x−position
Reference y−position

(c) Output plot for Plant P3.

Figure 64: Output plots for the addition of background traffic and 30% packet loss in INCS.

NCSWT allows a user to rapidly reconfigure their experimental setup for the simulation of a

NCS. For example, in order to evaluate the impact of network effects on a NCS, the configurations

in the NDML is modified to the desired network configuration setup and then updated code is

generated from the network model without modifying the control models. Similarly, if the dynamics

of the control system is changed, the models in the CDML are modified to reflect the changes while

maintaining the same network configurations, and then updated control models are generated.

If the information passed between the control system and the network is changed, the NCSWT

MIL model of the NCS needs to be modified to reflect the change. For example, when an additional

parameter or new information type is introduced in the NCS, a new interaction type can be added

to the existing NCS model defined in the NCSWT MIL and the new parameter can be added to

it. If the new parameter needs to be added to an already existing information exchange type, the

154

167

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0 20 40 60 80 100
D

e
la

y
(s

)
Time(s)

Pair 1, sample time 0.10s

(a) Delay plot for P1-C1 pair

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0 20 40 60 80 100

D
e
la

y
(s

)

Time(s)

Pair 2, sample time 0.15s

(b) Delay plot for P2-C2 pair

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0 20 40 60 80 100

D
e
la

y
(s

)

Time(s)

Pair 3, sample time 0.25s

(c) Delay plot for P3-C3 pair

Figure 65: End-to-End delay for the addition of background traffic and 30% packet loss in INCS.

parameter can be added to the existing interaction reflecting the information type that is exchanged

between the federates. In a different case, if a new control component is introduced to the NCS,

a new CD federate needs to be added to NCSWT MIL to reflect the introduced control design

component and the required interactions are defined to reflect the communication of the new federate

with the other federates. After the modifications to NCSWT MIL model of the NCS, update code

and models are generated to reflect the changes to the model. In the case we need to modify the

communication exchange between control components by adding new interactions or introduce

additional components by adding federates, we use NCSWT MIL to add the necessary components

and essentially repeat the NCS design process as described in Section 6.3.

We demonstrate the design-time efficiency for the Network UAV example. Recall, this NCS

involves the digital control of an unmanned aerial vehicle (UAV), representing the plant, over the

802.11b wireless network to track a desired trajectory. For the design-time efficiency, we consider

the amount of code that is automatically generated for simulating the NCS. Table 6 provides a

155

168

summary of the size of code and models that are automatically generated from the design-time

models. For the run-time efficiency, we consider the actual time it takes to simulate the NCS.

Table 6: Generated Code for Networked UAV Case Study
Files Size
1. Matlab models 100 Kilobytes
2. Matlab glue code 132 Kilobytes
3. ns-2 model and topology scripts 20 Kilobytes
4. ns-2 glue code 160 Kilobytes
5. Federation startup script 4 Kilobytes

Table 7 shows the time durations for simulating the NCS in various multi-hop network topologies

and in the presence of network uncertainties such as packet loss and time varying delays. The time

durations shown in Table 7 are the actual times required to run 100 seconds of logical simulation

time.

Table 7: Time Efficiency for Networked UAV Case Study
Scenarios Actual Duration

(in minutes)
Nominal 5.5

Packet Losses 20% 8.4
30% 11.4
40% 13.5

Multi-hop Network 3 hops 17.4
4 hops 22.2
5 hops 26.2

We also provide the run-time efficiency of the multi-agent NCS (MANCS) example. Similar to

the networked UAV case, the time durations shown in Table 8 are the actual times required to run

100 seconds of logical simulation time.

Table 8: Time Efficiency for MANCS Case Study
Scenarios Actual Duration

(in minutes)
Nominal 10.0

Background Traffic and 3 hops 17.4
30% Packet Loss 4 hops 22.2

5 hops 26.2

156

169

6.8 Summary

The design and analysis of NCS is a critical task due to the complex interactions and uncertain-

ties introduced by network effects. Simulation is a powerful technique in evaluating various NCS

models and the impact of network effects on the overall system performance. In this Chapter, we

present an integrated modeling and simulation tool, NCSWT, for NCS. We describe the HLA-based

approach guiding the tool’s implementation as well as the MIC techniques for the rapid synthesis of

components required for the simulation of a NCS. We demonstrate the capabilities of the tool using

case studies and also provided an evaluation of tool.

Our use of HLA-based framework provides great opportunities in regards to extending the

framework to other simulators. The approach is modular and extensible. Based on previous works

in [186, 327, 328] as well as the NCSWT, which involve the integration of various simulators using

HLA, the inclusion of other simulators such as ns3, opnet, Modelica etc. can follow a similar ap-

proach. The main challenges involve identifying the critical sections in the simulators to integrate

the time synchronization mechanism and data distribution services offered by the HLA standard.

157

170

CHAPTER 7

ENERGY-BASED ATTACK DETECTION IN NETWORKED CONTROL SYSTEMS

7.1 Introduction

The increased autonomy of CPS, together with the introduction of communication networks, has in-

creased the security vulnerabilities of CPS infrastructure to intentional and malicious cyber attacks.

Within the past few years, there has been a surge in attacks on CPS infrastructures. This increased

prevalence of attacks has resulted in increased concerns regarding the security of these systems.

Due to the safety-critical nature of CPS, failure or disruption of normal operation can potentially

lead to serious harm to the physical system under control and to the people and other infrastructures

that depend on it. Hence, securing these systems in order to ensure resilient operation is of utmost

importance. Some of the well-known examples of attacks on CPS include the W32.Stuxnet worm

attack that maliciously infected an Iranian Nuclear facility, taking control and heavily disrupting its

normal operation according to the attacker’s design [333], the cyber attacks on power transmission

networks operated by Supervisory Control and Data Acquisition (SCADA) Systems [334], as well

as attacks that infiltrated critical systems including medical devices [335], waste water treatment

plants [336] and NRG generation plants [337].

In securing and ensuring the safety of CPS infrastructures, the reliable detection of attacks is

very important. It is also fundamental to the design of compensation and reconfiguration mecha-

nisms for mitigating the impact of attacks. Attack detection has become a very active research with

numerous techniques being sought to facilitate the early detection of attacks on CPS. The presence

of the network increases the complexity of the detection of attacks. Hence, effective and yet effi-

cient novel approaches are needed to enable the early detection of attacks in CPS. A majority of

the existing detection approaches are typically from the cyber-security community. As highlighted

in [226], the traditional approach often used in information/cyber-security neglects the knowledge

of the physical process under control in the detection of attacks. Contrary to the traditional cyber-

security approach, newer approaches in the CPS community, instead of creating models of network

traffic or software behavior, leverage the knowledge of the physical process in designing effective

158

171

mechanisms in order to facilitate the detection of attacks. The idea is that by understanding the in-

teractions of the control system with the physical world, it would be possible to develop systematic

frameworks to detect attacks and secure CPS in general.

In this work, we utilize the properties of physical systems in order to define precise detectability

conditions for certain attack models and vulnerabilities. An example of such physical system prop-

erty is energy. The concept of energy is very important in the behavior of dynamical systems and it

is typically common to view dynamical systems as energy-transformation devices. The concept of

energy can also be extended in certain cases where an abstract notion of energy can be constructed.

As discussed in Chapter 2, there has only been a handful of works in the area that use the concept

of energy in addressing the problem of detection and most of these works have been focused on

reliability as it pertains to the protection of physical components against faults. Additionally, ex-

isting work does not consider the introduction of a communication network and do not address the

detection of intentional malicious cyber attacks against CPS.

In this chapter, using the intuitive notion of energy, we propose an attack detection mechanism

for CPS. The proposed approach is complementary to other detection mechanisms such as those

described in Chapter 2 (e.g. observer-based detection). The underlying idea is that the presence

of attacks disturbs the energy balance of the physical system by dissipating or injecting additional

energy. We define the notion of detectability of an attack by its effect on system’s energy. Com-

pared to the existing detection techniques, the proposed approach provides the additional benefit of

detecting when and to what magnitude a system’s energy property is impacted due to the occur-

rence of an attack. Based on this characterization, one can estimate the impact of the attack on the

stability of the overall system. In particular, we focus on dissipative CPS, which include a large

class of existing systems. We present the use of energy-balance in the detection of attacks in NCS.

We present a general characterization of attacks on the energy of a dynamical system and also we

demonstrate the impact of specific attack models on the stability guarantees of NCS. Finally, we

demonstrate our approach using a case study on the tracking control of a single joint of a robotic

arm over a network.

The contributions of this work are summarized as follows:

1. We formulate the detection of attacks using the system property of energy. We define the

159

172

notion of energy-based monitor for networked control systems and introduce the Energy-

Based Attack Detector (EBAD) whose mechanism is based on a system’s energy.

2. We prove that EBAD solves the attack detection problem. In addition, we illustrate that the

impact of attacks on a system can be estimated as the excess or loss in a system’s energy.

Based on the estimated energy, attacks can be qualitatively characterized as either being pas-

sive or non-passive.

3. Based on well-known attack models, we illustrate the impact of the defined attacks on the

energy of a system using the formulation of EBAD. We also present analytical results to

show conditions in which the attacks can violate passivity properties of the overall system.

4. We evaluate the proposed methodology using simulations as well as experiments on a robotic

manipulator test-bed.

The rest of the chapter is organized as follows. The networked control system model, the attack

models and problem statement are given in Section 7.2. The energy-based attack detection ap-

proach, the analytical results on the detection mechanism and the characterization of passive and

non-passive attacks are presented in Section 7.3. Section 7.4 presents an evaluation of the proposed

approach using simulations. An experimental case study on an actual robotic system testbed is

presented in Section 7.5 in order to illustrate the application of the approach to a physical system.

Finally, a summary of the chapter is presented in Section 7.6.

7.2 System Model and Problem Statement

In this section, we describe the components of networked control system and the attack models

considered in this work. Subsequently, we formulate the attack detection problem and describe the

underlying assumptions. The notations used in the following sections are standard. Let Rn denote

the Euclidean space of dimension n, I denotes the identity matrix of appropriate dimensions. For

a matrix P ∈ Rnxn, its transpose is denoted by P T . For a symmetric matrix, P , where P =

P T , P > 0 denotes it is positive definite. The norm of a vector or a matrix is given by ∥ P ∥.

160

173

7.2.1 Networked Control System Model

We consider a networked control system as depicted in Figure 66. The main components of the

NCS are the physical plant, the controller, the wave transformation (a static local controller), and

the communication network. The data exchange between the plant and the controller is done over a

communication network.

Figure 66: Networked Control System

(a) Physical Plant Model: We model the physical plant as a discrete time-invariant system. This

version of the plant neglects system nonlinearities and presence of noise in the dynamics and

measurement signals. We consider the physical plant which can be represented in the state

space form as follows:

Hp :

xk+1 = Axk +Buk

yk = Cxk +Duk

(105)

161

174

where xk ∈ X represents the state variables, uk ∈ U represents the control inputs to the plant

and yk ∈ Y represents the plant outputs obtained by sensors at sampling instant k ∈ Z.

(b) Controller Model: The controller modifies the behavior of the physical plant through the ap-

plication of a control input command in order to achieve a desired objective or satisfy a per-

formance requirement. The controller can be represented in discrete-time state-space form as

follows:

Hc :

zk+1 = Aczk +Bcek

yck = Cczk +Dcek

(106)

where zk ∈ Rq represents the controller states, yck is the control command, ek = rk − uck is

the error between the reference, rk and the received plant output, uck , with the matrices Ac, Bc,

Cc and Dc of appropriate dimensions. It is assumed that the controller is designed under the

nominal conditions, i.e. without attacks, to achieve the desired performance objective.

(c) Wave Transformation: In Section 3.6, we introduced the use of wave variables for exchange

of information over the network to preserve the power content of the exchanged variables. From

Figure 66, the wave transformation is denoted by the blocks, b. The wave variables pair (Urk ,

Vrk) on the plant side as well as the pair (Ulk , Vlk) on the controller side of the network can be

described by the following expressions:

Urk =
1√
2b

(yk + buk) (107)

Vrk =
1√
2b

(yk − buk) (108)

Ulk =
1√
2b

(uck + byck) (109)

Vlk =
1√
2b

(uck − byck) (110)

where b ∈ R+
0 . From Figure 66, one can observe that under ideal network conditions, Vlk = Vrk

and Urk = Ulk .

162

175

Table 9: Attack Models and Compromised Components of NCS
Attack Type Wave Variables (Vrk , Urk) Sensor (yk) Actuator(uk)

Integrity
Min/Max C C C
Additive C C C

Min/Max Energy C NC NC
DoS C NC NC

7.2.2 Attack Model

Figure 66 depicts the feasible cyber-attacks as a result of the vulnerabilities of the networked control

system. While the attacks denoted as A1-A4 model attacks on the information exchanged over the

communication network, the attacks denoted as A5 and A6 models attacks on sensors and actuators

respectively. Similar well-known attack types have be proposed in [228][227]. For each attack type,

Ak, let Ta = ks, ..., ke denote the attack duration with the attack starting from ks and ending at

ke. We consider two main classes of attacks, integrity attacks and denial-of-service attacks. Table 9

provides a summary of the attack models considered in this framework. In the table, C, indicates

the attack models considered for the corresponding components while NC indicates that the attack

type is not considered. These attack types are described as follows:

(a) Integrity attacks: In an integrity attack, an adversary deceives a compromised component of

the NCS into believing that a received false data is valid or true. The underlying assumption

is that all attacks lie within a predetermined range since attacks leading to signals that exceed

such a range can be easily detected. The integrity attacks represented as A1, A3, A5 and A6 in

Figure 66 can be further categorized into the following:

(i) Min and Max attacks: These attacks involve the adversary modifying the content of com-

promised signals to their respective minimum or maximum values. We model min/max

attacks on the exchanged wave variables as well as the min/max attacks on the sensors and

actuators. The attacks on the exchanged variables essentially exploit the vulnerabilities as

a result of the communication while the attacks on the sensors and actuators exploit the

vulnerabilities of the computing interfaces to these components which may or may not

be colocated. We consider them separately since each component’s interaction with the

overall NCS is different and hence it is important to understand the impact of an attack on

each component on the correct operation of the overall NCS.

163

176

(1) Min/Max attacks on exchanged wave variables

For attacks on the wave variable, Vrk , sent from the plant we have,

Ṽ min
rk

=

Vrk ∀k /∈ Ta

Vrmin ∀k ∈ Ta
(111)

Ṽ max
rk

=

Vrk ∀k /∈ Ta

Vrmax ∀k ∈ Ta
(112)

Similar attacks can be launched against the wave variable, Urk , sent from the con-

troller

Ũmin
rk

=

Urk ∀k /∈ Ta

Urmin ∀k ∈ Ta
(113)

Ũmax
rk

=

Urk ∀k /∈ Ta

Urmax ∀k ∈ Ta
(114)

(2) Min/Max attacks on sensors and actuators

For attacks on the sensor signal, yk, we have,

ỹmin
k =

yk ∀k /∈ Ta

ymin ∀k ∈ Ta
(115)

ỹmax
k =

yk ∀k /∈ Ta

ymax ∀k ∈ Ta
(116)

Similar attacks could be launched against the actuator signal, uk

ũmin
k =

uk ∀k /∈ Ta

umin ∀k ∈ Ta
(117)

164

177

ũmax
k =

uk ∀k /∈ Ta

umax ∀k ∈ Ta
(118)

(ii) Additive attacks: This attack involves introducing an additional offset/bias, α ̸= 0 to the

actual exchanged information. We model additive attacks on the exchanged wave variables

as well as additive attacks on the sensors and actuators.

(1) Additive attacks on exchanged wave variables

For attacks on the wave variable, Vrk , sent from the plant we have,

Ṽ a
rk

=

Vrk ∀k /∈ Ta

Vrk + αk ∀k ∈ Ta and Vrk + αk ∈ V

Vrmin ∀k ∈ Ta and Vrk + αk < Vrmin

Vrmax ∀k ∈ Ta and Vrk + αk > Vrmax

(119)

Similar attacks can be launched against the wave variable, Urk , sent from the con-

troller

Ũa
rk

=

Urk ∀k /∈ Ta

Urk + αk ∀k ∈ Ta and Urk + αk ∈ U

Urmin ∀k ∈ Ta and Urk + αk < Urmin

Urmax ∀k ∈ Ta and Urk + αk > Urmax

(120)

(2) Additive attacks on sensors and actuators

For attacks on the sensor signal, yk, we have,

ỹak =

yk ∀k /∈ Ta

yk + αk ∀k ∈ Ta and yk + αk ∈ Y

ymin ∀k ∈ Ta and yk + αk < ymin

ymax ∀k ∈ Ta and yk + αk > ymax

(121)

165

178

Similar attacks could be launched against the actuator signal, uk

ũak =

uk ∀k /∈ Ta

uk + αk ∀k ∈ Ta and uk + αk ∈ U

umin ∀k ∈ Ta and uk + αk < umin

umax ∀k ∈ Ta and uk + αk > umax

(122)

(iii) Min/Max energy attacks: Considering that the proposed approach is based on energy, an

attacker’s objective could be to apply the largest impact damage on the system based on

the knowledge of the system’s energy. We model two types of energy-based attacks based

on their intended impact on the system.

(1) Max energy attack: In this case, we model attacks that attempt to dissipate maximum

amount of energy i.e. the energy of the system becomes positive. This type of attack

can be seen as an attacker’s attempt to degrade system performance without desta-

bilizing the system in regards to energy. In this attack type, for each time step, the

attacker chooses a value for the compromised wave variable such that the total dissi-

pated energy is maximized without exceeding the predetermined limits of the wave

variable. The max energy attack can be captured as follows:

maximize
Vrk

ET

subject to Vrk ∈ [Vrmin , Vrmax]

(2) Min Energy Attack: Similar, to the max energy attack, in this case we model attacks

that attempts to inject the largest amount of energy which from the system’s perspec-

tive portrays the system as generating additional energy i.e. the energy of the system

becomes negative. This attack type can be seen as an attacker’s attempt to both de-

grade the performance of the system and potentially destabilize the system. In the

model of this attack, at each time step the attacker chooses the compromised wave

variable such that the energy is minimized without exceeding the predetermined lim-

166

179

its of the wave variable. The min energy attack can be captured as follows:

minimize
Vrk

ET

subject to Vrk ∈ [Vrmin , Vrmax]

(b) Denial-of-Service (DoS) attacks: DoS attacks, denoted as A2 and A4 in Figure 66, prevent

signals from reaching the intended destination. In NCS, it involves the disruption of the avail-

ability of information exchanged between the plant and the controller. DoS attacks are typically

carried out by jamming the communication channel, changing the routing protocol or saturating

the receiver with useless signals. The attacker’s main objective is usually to degrade the perfor-

mance of the NCS as well as to potentially destabilize the physical system. The DoS attack can

be modeled as a form of the additive attack as follows:

Ṽ DoS
rk

= Vrk + αVrk

α = 0 ∀k /∈ Ta

α = −1 ∀k ∈ Ta
(123)

Similarly, for the wave variable sent from the controller, we have

ŨDoS
rk

= Urk + αUrk

α = 0 ∀k /∈ Ta

α = −1 ∀k ∈ Ta
(124)

7.2.3 Problem Statement

Consider the networked control system as shown in Figure 66, under possible cyber attacks as

indicated by the attacks A1-A6 due to the vulnerabilities of NCS. We define what is meant by an

energy-based monitor and detectability of attacks in this framework.

Definition 7.1. An energy-based monitor is a deterministic algorithm, Φ : Λ 7→ Ψ, with knowledge

of the plant dynamics and access to discrete-time measurements and control inputs. The output of a

monitor is Ψ = {ψ1, ψ2}, with ψ1 ∈ {True, False}, and ψ2 ∈ {Passive,Non− Passive}

Definition 7.2. An attack is detectable if in the presence of the attack, Ak, ψ1 =True and ψ2 =

Passive or Non-Passive.

167

180

The following problem is of interest:

1. {Detection Problem} Design an algorithm, Φ, for an energy-based monitor which can quan-

tify or estimate the energy of the system, ET , such that in the presence of an attack and with

the knowledge of the plant, the controller and exchanged wave variables the following holds:

Ψ = {ψ1, ψ2} =

{True,Passive} ∀ET > 0

{True,Non-Passive} ∀ET < 0}
(125)

In the following sections, we propose a solution to the above problem. We assume the following

about the NCS.

Assumption 1: The plant and controller are dissipative by design, both with a sampling period, Ts.

The assumption of dissipativity for both the plant and controller is to ensure stability guarantees in

the nominal case.

Assumption 2: The components of the NCS including the physical plant, the sensor, actuator,

controller and attack monitor are time-synchronized. This ensures that all the components of the

NCS are progressing in lock step in regards to time.

Assumption 3: Whenever the input buffers are empty, null packets are processed. This assumption

is used to preserve passivity in the nominal sense in order to avert the typical hold-last sample

approach which is known to be non-passive. Other approaches for handling missed packets can be

sought in this case as well with no loss of generality.

Assumption 4: It is assumed that the controller and monitoring system for the plant are co-located

together. The idea is that the controller is assumed to be trustworthy while the plant’s trustworthiness

is not known or guaranteed. In the case that the trustworthiness of the controller is not known or

guaranteed, an additional monitor can be co-located with the plant.

Assumption 5: The attacker has knowledge of the plant and controller. In this assumption, we

consider that the attacker is smart in the sense that he/she can attempt to use knowledge of the

system to introduce attacks that cannot be easily detected with a simple bad data detector.

Assumption 6: For our initial analysis, we assume an ideal communication network, hence do not

consider the usual communication network effects such as time-delays and packet losses but rather

we focus on malicious attacks on the cyber-physical infrastructure. In this regard, we assume that

168

181

any anomaly in the behavior of the overall system is due to an attack. This assumption will be

relaxed later to include network effects in our approach.

7.3 Energy-Based Attack Detection

In this section, we derive the energy balance for the networked control system in terms of the input-

output wave variables, Urk and Vrk . Next, we provide a generalized characterization of attacks

based on the derived energy balance. We then evaluate the impact of the attack models presented in

Section 7.2.2. Finally, we consider the case where the states of the system are not measurable, in

which case we introduce the use of an observer to estimate the states.

7.3.1 Discrete-Time Energy Balance Derivation for NCS

We present the energy-based attack detection mechanism for the networked control system in Fig-

ure 66. We first present the derivation of general energy balance in terms of the plant’s input, uk

and output, yk, and then we refine the derivation to represent the energy balance system in terms of

the wave variables exchanged over the network.

Proposition 7.3. Consider the discrete-time physical plant, Hp, with a minimal realization (control-

lable and observable) defined in (105). If Hp is QSR dissipative then it satisfies the energy balance,

ET given by

ET = Esu − Est − Ed = 0 (126)

where Esu is the supplied energy, Est is the stored energy and Ed is the dissipated energy.

Proof. Recall the storage function, Vk, defined as 1
2x

T
k Pxk. The change in the storage function,

∆V is given by

∆V = Vk+1 − Vk

=
1

2
xTk+1Pxk+1 −

1

2
xTk Pxk

169

182

substituting xk+1 from (105), we have

∆V =
1

2
((xTkA

T + uTkB
T)P (Axk +Buk)− xTk Pxk)

=
1

2
(xTk (A

TPA− P)xk + xTkA
TPBuk + uTkB

TPAxk + uTkB
TPBuk) (127)

From the Generalized KYP lemma described in lemma 3.20, we can substitute (36), (37) and (38)

into equation (127), then we have

∆V =
1

2
(xTk (C

TQC − LLT)xk + xTk (C
TQD + CTS − LW)uk

+ uTk (D
TQC + STC −W TLT)xk + uTk (R+DTS + STD +DTQD −W TW)uk)

(128)

After some manipulation and simplification, we have

∆V =
1

2
((Cxk +Duk)

TQ(Cxk +Duk) + 2(Cxk +Duk)
TSuk + uTkRuk)

− 1

2
(xTkLL

Txk + xTkLWuk + uTkW
TLTxk + uTkW

TWuk)

From (105), noting that yk = Cxk +Duk, we can now write

∆V =
1

2
(yTkQyk + 2yTk Suk + uTkRuk)

− 1

2
(xTkLL

Txk + xTkLWuk + uTkW
TLTxk + uTkW

TWuk)

Summing over the time interval from k = 0 to k = N , based on the sampling time, Ts. The total

energy equation becomes

Ts
2

N∑
k=0

(yTkQyk + 2yTk Suk + uTkRuk)− Ts(Vk+1 − Vk0)

−Ts
2

N∑
k=0

(xTkLL
Txk + xTkLWuk + uTkW

TLTxk + uTkW
TWuk) = 0 (129)

170

183

where

Esu =
Ts
2

N∑
k=0

(yTk Qyk + 2yTk Suk + uTkRuk)

Est = Ts(Vk+1 − Vk0)

Ed =
Ts
2

N∑
k=0

(xTkLL
Txk + xTkLWuk + uTkW

TLTxk + uTkW
TWuk)

Hence, ET = Esu − Est − Ed = 0

The system under consideration is a networked system, whereby the components of the system

communicate over a packet-switched network. Hence, it is appropriate to directly relate the energy

based equation to the transmitted and received components over the network. We now provide the

energy balance in terms of the exchanged wave variables.

Proposition 7.4. Given the system Hp with the energy balance as defined in (129) and the wave

transformation provided in (107)-(110). The resulting energy balance of the system in wave domain

is

ETwv = Esuwv − Estwv − Edwv = 0 (130)

where ETwv is the total of the system, Esuwv is the supplied energy, Estwv is the stored energy and

Edwv is the dissipated energy.

Proof. From equations (9) and (10), and also assuming b= 1, solving for the plant output, yk and

input, uk, we have

yk =
1√
2
(Urk + Vrk) (131)

uk =
1√
2
(Urk − Vrk) (132)

After some mathematical manipulations and simplification, the plant dynamics can be expressed in

terms of the input wave variable, Urk and output wave variable, Vrk . The resulting system, Hpwv

can be described as

Hpwv :

xk+1 = Āxk + B̄Urk

Vrk = C̄xk + D̄Urk

(133)

171

184

with

Ā = A−B(D + I)−1C

B̄ =
B√
2
(I − (D + I)−1(D − I))

C̄ =
√
2(D + I)−1C

D̄ = (D + I)−1(D − I)

Recall the total energy expression given in (129), by substitution, the energy balance in the wave

domain becomes

Ts
2

N∑
k=0

(V T
rk
Q̄Vrk + 2V T

rk
S̄Urk + UT

rk
R̄Urk)− Ts(Vk+1 − V0)

−Ts
2

N∑
k=0

(xTkLL
Txk + xTkLWUrk + UT

rk
W TLTxk + UT

rk
W TWUrk) = 0 (134)

where

Q̄ = (
Q− 2S +R

2
); S̄ = (

Q−R

2
); R̄ = (

Q+ 2S +R

2
); (135)

LLT = (LLT − LWC̄√
2

− C̄W TLT

√
2

+ C̄TW TWC̄)

LW = (
LW√

2
− LWD̄√

2
− C̄TW TW

2
+
C̄TW TWD̄

2
)

W TLT = (
W TLT

√
2

− D̄TW TLT

√
2

− W TWC̄

2
+
D̄TW TWC̄

2
)

W TW = (
W TW −W TWD̄ − D̄W TW + D̄TW TWD̄

2
)

172

185

With

Esuwv =
Ts
2

N∑
k=0

(V T
rk
Q̄Vrk + 2V T

rk
S̄Urk + UT

rk
R̄Urk)

Estwv = Ts(Vk+1 − V0)

Edwv =
Ts
2

N∑
k=0

(xTkLL
Txk + xTkLWUrk + UT

rk
W TLTxk + UT

rk
W TWUrk)

Hence, ETwv = Esuwv − Estwv − Edwv = 0

7.3.2 Main Results: Characterization of Energy in the Presence of Attacks

In this section, we provide a generalized characterization of the total energy in the presence of

attacks.

Theorem 7.5. Consider the networked control system depicted in Figure 66, under cyber-attack,

Ak, where by the attacker can remove or modify the exchanged wave variables Urk and Vrk . Since

the plant is assumed to be linear and time-invariant, the modified variables due to an attack can be

modeled as

Ũrk = Urk + Uak ; Ṽrk = Vrk + Vak ; x̃k = xk + xak ; (136)

The total energy of the plant system, ẼTwv , in the presence of attack is

ẼTwv = ETa ̸= 0 (137)

Proof. Based on the attack-modified input-output relations, the energy for the system becomes

ẼTwv =
Ts
2

N∑
k=0

(Ṽ T
rk
Q̄Ṽrk + 2Ṽ T

rk
S̄Ũrk + ŨT

rk
R̄Ũrk)

− Ts
2

N∑
k=0

(x̃kLLT x̃k + x̃kLWŨrk + ŨrkW
TLT x̃k + ŨrkW

TWŨrk)

− Ts(
1

2
x̃k+1Px̃k+1 −

1

2
x̃0Px̃0) (138)

Next, we simplify the above total energy based on the individual energy components which include

173

186

supplied, stored and dissipated energies. For the new supplied energy we have,

Ẽsuwv =
Ts
2

N∑
k=0

(Ṽ T
rk
Q̄Ṽrk + 2Ṽ T

rk
S̄Ũrk + ŨT

rk
R̄Ũrk) (139)

substituting (136) in (139), we have

Ẽsuwv =
Ts
2

N∑
k=0

((Vrk + Vak)
T Q̄(Vrk + Vak) + 2(Vrk + Vak)

T S̄(Urk + Uak)

+ (Urk + Uak)
T R̄(Urk + Uak))

=
Ts
2

N∑
k=0

(V T
rk
Q̄Vrk + 2V T

rk
Q̄Vak + V T

ak
Q̄Vak + 2V T

rk
S̄Urk + 2V T

rk
S̄Uak

+ 2V T
ak
S̄Urk + 2V T

ak
S̄Uak + UT

rk
R̄Urk + 2UT

rk
R̄Uak + UT

ak
R̄Uak)

=
Ts
2

N∑
k=0

(V T
rk
Q̄Vrk + 2V T

rk
S̄Urk + UT

rk
R̄Urk)

+
Ts
2

N∑
k=0

(V T
ak
Q̄Vak + 2V T

rk
Q̄Vak + 2V T

rk
S̄Uak)

+
Ts
2

N∑
k=0

(2V T
ak
S̄Urk + 2V T

ak
S̄Uak + 2UT

rk
R̄Uak + UT

ak
R̄Uak) (140)

From (140) above, it can be seen that,

Ẽsuwv = Esuwv + Esuwva (141)

Next, the new stored energy component becomes,

Ẽstwv = Ts(
1

2
x̃Tk+1Px̃k+1 −

1

2
x̃T0 Px̃0) (142)

174

187

substituting (136) in (142), we have

Ẽstwv = Ts(
1

2
(xk+1 + xak+1

)TP (xk+1 + xak+1
)− 1

2
(x0 + xa0)

TP (x0 + xa0))

=
Ts
2
((xTk+1Pxk+1 + 2xTk+1Pxak+1

+ xTak+1
Pxak+1

)− (xT0 Px0 + 2xT0 Pxa0 + xTa0Pxa0))

=
Ts
2
((xTk+1Pxk+1 − xT0 Px0) + (xTak+1

Pxak+1
− xTa0Pxa0 + 2xTk+1Pxak+1

− xT0 Pxa0))

(143)

From (143) above, it can be seen that,

Ẽstwv = Estwv + Estwva (144)

Finally, the new dissipated energy component becomes

Ẽdwv =
Ts
2

N∑
k=0

(x̃kLLT x̃k + x̃TkLWŨrk + ŨrkW TLT x̃k + ŨrkW TWŨrk) (145)

substituting (136) in (145), we have

Ẽdwv =
Ts
2

N∑
k=0

((xk + xk)
TLLT (xk + xk) + (xk + xk)LW (Urk + Uak)

+ (Urk + Uak)W
TLT (xk + xk) + (Urk + Uak)W

TW (Urk + Uak))

=
Ts
2

N∑
k=0

(xTkLL
Txk + xTkLL

Txak + xTakLL
Txk + xTakLL

Txak

+ xTkLWUrk + xTkLWUak + xTakLWUrk + xTakLWUak

+ UT
rkW

TLTxk + UT
rkW

TLTxak + UT
ak
W TLTxk + UT

ak
W TLTxak

+ UrkW TWUrk + UrkW TWUak + UakW
TWUrk + UakW

TWUak) (146)

From (146) above, it can be seen that,

Ẽdwv = Edwv + Edwva (147)

175

188

Hence, from (141), (144) and (147), the total energy, ẼT in the presence of attack(s), then becomes

ẼTwv = Ẽsuwv − Ẽstwv − Ẽdwv

= Esuwv + Esuwva − Estwv − Estwva − Edwv − Edwva

=suwv −Estwv − Edwv +suwva −Estwva − Edwva

= ETwv + ETa (148)

From (130), we have

ẼT = ETwv + ETa = ETa (149)

Corollary 7.6. In the absence of any detectable attack, Ak, the total energy of the system, ẼTwv is

ẼTwv = ETwv = 0 (150)

Proof. This result follows directly from the system total energy property described in Theorem 7.4

and the results in Theorem 7.5 in the presence attacks.

Remark 7.1. The detection algorithm for the monitor is evaluated based on the information re-

ceived at the controller. Considering the fact that the controller is considered trustworthy, the

effects of attacks on the wave variable, Ulk which is received as Urk by the plant will be reflected

on wave variable Vlk , which is Vrk sent from the plant side of the network. Recall the expression in

(108) relating the actuator signal and sensor signal , to the wave variable,

Vrk =
1√
2b

(yk − buk)

It is straight forward to see that attacks on either the sensor or actuator will be reflected on the

wave variable Vrk , which is subsequently received at the controller as Vlk .

Corollary 7.7. An attack, Ak, is characterized as a passive attack if the presence of the attack

results in ẼTwv > 0.

176

189

From the definition of passivity in (3.6), ẼTwv > 0 implies that the supplied energy for the

attack system is larger than the dissipated and stored energies.

Corollary 7.8. An attack, Ak, is characterized as a non-passive attack if the presence of the attack

results in ẼTwv < 0.

This essentially implies that the supplied energy of the attacked system is less than the dissipated

and store energies. Therefore, the system generates additional internal energy which results in a

non-passive behavior. This implies that the overall stability of the networked control system is no

longer guaranteed.

The energy-based attack detector can be summarized by Algorithm 1. Figure 67 also shows the

block diagram for the energy based monitor. The inputs to the algorithm, also denoted in Figure 67,

are the wave variables, Vrk and Urk and the plant’s state xk. The output of the algorithm is Ψ, which

provides information on whether an attack has occurred and the impact of the attack on the overall

system. The blocks supplied energy, stored energy and dissipated energy in Figure 67 corresponds

to the computation of the supplied energy, stored energy and dissipated energy respectively as in-

dicated by lines 1-4 in Algorithm 1. Figure 67 shows the block diagram for the designed energy

Algorithm 1: Energy-Based Attack Detection
Input: Vrk ,Urk ,xk
Output: Ψ

1 Compute the supplied energy, Esuwv

2 Compute the stored energy, Estwv

3 Compute the dissipated energy, Edwv

4 Compute the total energy, ETk
= Esuwv − Estwv − Edwv

5 if ETk
̸= 0 then

6 ψ1 =True
7 if ETk

> 0 then
8 ψ2 =Passive

9 else
10 ψ2 =Non-Passive

11 else
12 ψ1 =False

13 Ψ ={ψ1,ψ2}
14 return Ψ

based monitor for attacks in the case of measurable plant states.

177

190

Figure 67: Energy-Based Monitor

Remark 7.2. Thus far, the characterization of attacks are based on the notion that in the absence

of attacks, the nominal energy balance of the monitored system should be zero. In a more realistic

setting, this assumption can be relaxed in order to integrate the potential effects of the network

communication as a result of delays or packet loss. In the presence of network effects, instead of

the energy balance being zero, a notion of a maximal value of energy due to network effects is

considered. Based on this notion, a threshold boundary, Eth, is defined. The characterization of

attacks are then evaluated based on the impact of the attacks that results in computed energy that

lies outside the boundary. This maximal energy value can be obtained empirically through various

approaches such as simulations and by imposing worst-case network conditions for the NCS.

7.3.3 Characterization of Attack Models

In order to illustrate the impact of attack models on the physical system, we evaluate the effect of

classical attacks on the total energy of the system. For brevity, we focus on the attacks A1 and A2,

although similar approach can be used to evaluate the effects of attacks A3-A6. Also, we consider

the cases where the dissipative plant is passive or strictly-ouput passive.

Assuming there are no attacks on Urk , the impact of the attacks on Vrk is reflected on only the

supplied energy resulting in the component,

ẼTwv = ETwva = Esuwva =
Ts
2

N∑
k=0

(2V T
rk
Q̄Vak + V T

ak
Q̄Vak + 2V T

ak
S̄Urk) (151)

Proposition 7.9. Consider the passivity-based network control system depicted in Figure 66, under

178

191

a max integrity attack, Ak, if the system dynamics Hp is passive, then

Ak :

Passive if

N∑
k=0

V T
rmax

Vrmax <
N∑
k=0

V T
rk
Vrk

Non-Passive if
N∑
k=0

V T
rmax

Vrmax >
N∑
k=0

V T
rk
Vrk

(152)

if the system dynamics Hp is strictly output passive, then

Ak :

Passive if

N∑
k=0

(V T
rmax

Vrmax + 2ϵ
(ϵ+1)V

T
rmax

Urk) <
N∑
k=0

(V T
rk
Vrk +

2ϵ
(ϵ+1)V

T
rk
Urk)

Non-Passive if
N∑
k=0

(V T
rmax

Vrmax + 2ϵ
(ϵ+1)V

T
rmax

Urk) >
N∑
k=0

(V T
rk
Vrk +

2ϵ
(ϵ+1)V

T
rk
Urk)

(153)

Proof. Based on the max integrity attack model in (112), Vak = Vrmax − Vrk . Substituting for Vak

in (151), we have

Esuwva =
Ts
2

N∑
k=0

(2V T
rk
Q̄(Vrmax − Vrk) + (Vrmax − Vrk)

T Q̄(Vrmax − Vrk)

+ 2(Vrmax − Vrk)
T S̄Urk)

=
Ts
2

N∑
k=0

(2V T
rk
Q̄Vrmax − 2V T

rk
Q̄Vrk + V T

rmax
Q̄Vrmax − 2V T

rk
Q̄Vrmax + V T

rk
Q̄Vrk

+ 2VrmaxS̄Urk − 2V T
rk
S̄Urk)

=
Ts
2

N∑
k=0

(V T
rmax

Q̄Vrmax − V T
rk
Q̄Vrk + 2VrmaxS̄Urk − 2V T

rk
S̄Urk) (154)

1. Passive physical system: In Section (3.7), a dissipative system is passive if it has following

QSR parameters, Q = 0, S = 1
2 and R = 0. Substituting the QSR parameters in (135),

Q̄ =
Q− 2S +R

2
= −1

2
(155)

S̄ =
Q−R

2
= 0 (156)

179

192

Substituting the (155) and (156) in (154), we have

Esuwva = −Ts
4

N∑
k=0

(V T
rmax

Vrmax − V T
rk
Vrk) (157)

From (157), a max integrity attack is categorized as a passive attack if Esuwva > 0 and as

non-passive attack if Esuwva < 0 which provides the result in (152)

2. Strictly output passive physical system: In Section (3.7), strictly-output passivity is equiv-

alent to having the following QSR parameters, Q = −ϵI , S = 1
2 and R = 0. Substituting the

QSR parameters in (135),

Q̄ =
Q− 2S +R

2
= −ϵ+ 1

2
(158)

S̄ =
Q−R

2
= − ϵ

2
(159)

Substituting (158) and (159) in in (154), we have

Esuwva = −Ts
2

N∑
k=0

(
(ϵ+ 1)V T

rmax
Vrmax

2
−

(ϵ+ 1)V T
rk
Vrk

2
+ ϵV T

rmax
Urk − ϵV T

rk
Urk)

After further simplification, we have

Esuwva = −Ts(ϵ+ 1)

4

N∑
k=0

((V T
rmax

Vrmax +
2ϵ

(ϵ+ 1)
V T
rmax

Urk)− (V T
rk
Vrk +

2ϵ

(ϵ+ 1)
V T
rk
Urk))

(160)

From (160), a max integrity attack is categorized as a passive attack if Esuwva > 0 and as a

non-passive attack if Esuwva < 0 leading to the result in (153)

Proposition 7.10. Consider the passivity-based network control system depicted in Figure 66, under

180

193

a min integrity attack, Ak, if the system dynamics Hp is passive, then

Ak :

Passive if

N∑
k=0

V T
rmin

Vrmin <
N∑
k=0

V T
rk
Vrk

Non-Passive if
N∑
k=0

V T
rmin

Vrmin >
N∑
k=0

V T
rk
Vrk

(161)

if the system dynamics Hp is strictly output passive, then

Ak :

Passive if

N∑
k=0

(V T
rmin

Vrmin + 2ϵ
(ϵ+1)V

T
rmin

Urk) <
N∑
k=0

(V T
rk
Vrk +

2ϵ
(ϵ+1)V

T
rk
Urk)

Non-Passive if
N∑
k=0

(V T
rmin

Vrmin + 2ϵ
(ϵ+1)V

T
rmin

Urk) >
N∑
k=0

(V T
rk
Vrk +

2ϵ
(ϵ+1)V

T
rk
Urk)

(162)

Proof. Based on the min integrity attack model in (111), Vak = Vrmin − Vrk . Substituting for Vak

in (151), we have

Esuwva =
Ts
2

N∑
k=0

(2V T
rk
Q̄(Vrmin − Vrk) + (Vrmin − Vrk)

T Q̄(Vrmin − Vrk)

+ 2(Vrmin − Vrk)
T S̄Urk)

=
Ts
2

N∑
k=0

(2V T
rk
Q̄Vrmin − 2V T

rk
Q̄Vrk + V T

rmin
Q̄Vrmin − 2V T

rk
Q̄Vrmin + V T

rk
Q̄Vrk

+ 2VrminS̄Urk − 2V T
rk
S̄Urk)

=
Ts
2

N∑
k=0

(V T
rmin

Q̄Vrmin − V T
rk
Q̄Vrk + 2VrminS̄Urk − 2V T

rk
S̄Urk) (163)

1. Passive physical system: Substituting the (155) and (156) in (163), we have

Esuwva = −Ts
4

N∑
k=0

(V T
rmin

Vrmin − V T
rk
Vrk) (164)

From (164), a min integrity attack is categorized as a passive attack if Esuwva > 0 and as a

non-passive attack if Esuwva < 0 essentially leading to the result in (161)

181

194

2. Strictly output passive physical system: Substituting (158) and (159) in in (163), we have

Esuwva = −Ts
2

N∑
k=0

(
(ϵ+ 1)V T

rmin
Vrmin

2
−

(ϵ+ 1)V T
rk
Vrk

2
+ ϵV T

rmin
Urk − ϵV T

rk
Urk)

After further simplification, we have

Esuwva = −Ts(ϵ+ 1)

4

N∑
k=0

((V T
rmin

Vrmin +
2ϵ

(ϵ+ 1)
V T
rmin

Urk)− (V T
rk
Vrk +

2ϵ

(ϵ+ 1)
V T
rk
Urk))

(165)

From (165), a min integrity attack is a categorized as a passive attack if Esuwva > 0 and as a

non-passive attack if Esuwva < 0 essentially leading to the result in (162)

Proposition 7.11. Consider the passivity-based network control system depicted in Figure 66, under

an additive integrity attack, Ak, if the system dynamics Hp is passive, then

Ak :

Passive if

N∑
k=0

2V T
rk
αk < −

N∑
k=0

αT
k αk

Non-Passive if
N∑
k=0

2V T
rk
αk > −

N∑
k=0

αT
k αk

(166)

if the system dynamics Hp is strictly output passive, then

Ak :

Passive if

N∑
k=0

2V T
rk
αk +

2ϵ
(ϵ+1)U

T
rk
αk < −

N∑
k=0

αT
k αk

Non-Passive if
N∑
k=0

2V T
rk
αk +

2ϵ
(ϵ+1)U

T
rk
αk > −

N∑
k=0

αT
k αk

(167)

Proof. Based on the additive integrity attack model in (119), Vak = αk. Substituting for Vak in

(151), we have

Esuwva =
Ts
2

N∑
k=0

(2V T
rk
Q̄αk + αT

k Q̄αk + 2αT
k S̄Urk) (168)

182

195

1. Passive physical system: Substituting the (155) and (156) in (168), we have

Esuwva = −Ts
4

N∑
k=0

(2V T
rk
αk + αT

k αk) (169)

From (169), an additive integrity attack is a categorized as a passive attack if Esuwva > 0 and

as non-passive attack if Esuwva < 0 leading to the result in (166)

2. Strictly output passive physical system: Substituting (158) and (159) in in (168), we have

Esuwva = −Ts
2

N∑
k=0

(2
(ϵ+ 1)V T

rk
αk

2
+

(ϵ+ 1)αT
k αk

2
+ ϵαT

k Urk)

Esuwva = −Ts(ϵ+ 1)

4

N∑
k=0

((2V T
rk
αk + αT

k αk +
2ϵ

(ϵ+ 1)
UT
rk
αk)) (170)

From (170), an additive integrity attack is categorized as a passive attack if Esuwva > 0 and

as a non-passive attack if Esuwva < 0 essentially leading to the result in (167)

Proposition 7.12. Consider the passivity-based network control system depicted in Figure 66, under

a denial-of-service attack, Ak, if the system dynamics Hp is passive, then

Ak :

{
Passive with Esuwva = Ts

2

N∑
k=0

V T
rk

Vrk

2 > 0 ∀Vrk ̸= 0 (171)

if the system dynamics Hp is strictly output passive, then

Ak :

{
Passive with Esuwva = Ts

2

∑N
k=0(

(ϵ+1)V T
rk

Vrk

2 + ϵV T
rk
Urk)

(172)

Proof. Based on the DoS attack model in (123), Vak = −Vrk . Substituting for Vak in (151), we

183

196

have

Esuwva =
Ts
2

N∑
k=0

(2V T
rk
Q̄(−Vrk) + (−Vrk)

T Q̄(−Vrk) + 2(−Vrk)
T S̄Urk)

Esuwva =
Ts
2

N∑
k=0

(V T
rk
Q̄Vrk − 2V T

rk
Q̄Vrk − 2V T

rk
S̄Urk) = −Ts

2

N∑
k=0

(V T
rk
Q̄Vrk + 2V T

rk
S̄Urk)

(173)

1. Passive physical system: Substituting the (155) and (156) in (173), we have

Esuwva =
Ts
2

N∑
k=0

V T
rk
Vrk
2

(174)

From (174), one can see that Esuwva is always greater than zero for Vrk ̸= 0 hence a DoS

attack is always a passive attack.

2. Strictly output passive physical system: Substituting (158) and (159) in in (173), we have

Esuwva =
Ts
2

N∑
k=0

(
(ϵ+ 1)V T

rk
Vrk

2
+ ϵV T

rk
Urk) (175)

By definition of passivity V T
rk
Urk ≥ 0 and given that ϵ > 0, then Esuwva > 0. Similar to the

passive case, from (175), a DoS attack is always a passive attack

Remark 7.3. The result obtained for the characterization of DoS attacks is similar for the analysis

of packet losses due to unreliability of network in the literature. While packet losses are due to

unreliable network, DoS is as a result of intentional and malicious attacks by an adversary.

For the class of linear systems considered in the work, EBAD can appropriately detect all the

attacks considered in Table 9.

184

197

7.3.4 Total Energy in the case of unmeasurable states

In the case unmeasurable plant states, a Luenberger observer of the form in (176) is introduced to

reconstruct an estimate of the plant states.

Hobs :

x̂k+1 = Ax̂k +BUrk − L(Vrk − Cx̂k −DUrk)

V̂rk = Cx̂k +DUrk

(176)

where L is the observer gain. Recall that the plant system is assumed to be observable. This means

there exists an observability matrix L such that the estimated state x̂k of the Luenberger observer

asymptotically converges to the true state xk.

Proposition 7.13. Given the system Hp with the energy balance described in Theorem 7.4. In the

case whereby the states are unmeasurable assuming a Luenberger observer, Hobsv as given in (176)

is integrated to estimate the states, x̂k. Then, the resulting equivalent total energy of the system in

wave domain, in the absence of attacks can be described by

ETwv = ETwvo = −Estoe − Edoe (177)

Proof. Due to the non-measurable states, the resulting energy-balance, ETwv is modified. Let, the

observation error be represented by ek = xk − x̂k From the observation error, the estimated state is

defined as x̂k = xk − ek. The total energy for the case of non-measurable states can be described

by

ETwvo = Esuwvo −Estwvo − Edwvo (178)

Where Esuwvo = Esuwv

Estwvo = Ts(
1

2
x̂Tk+1Px̂k+1 −

1

2
x̂k0Px̂k0)

Edwvo =
Ts
2

N∑
k=0

(x̂TkLL
T x̂k + x̂TkLWuk + UT

rk
W TLT x̂k + UT

rk
W TWUrk)

185

198

Substituting x̂k = xk − ek into Estwvo above, we have

Estwvo = Ts(
1

2
x̂Tk+1Px̂k+1 −

1

2
x̂k0Px̂k0)

= Ts(
1

2
(xk+1 − ek+1)

TP (xk+1 − ek+1)−
1

2
(xk0 − ek0)

TP (xk0 − ek0))

= Estwv +
Ts
2
(eTk+1Pek+1 − 2xTk+1Pek+1 + 2xTk0Pxk0 + eTk0Pek0)

Estwvo = Estwv + Estoe (179)

Similarly, substituting x̂k = xk − ek into Edwvo above, we have

Edwvo =
Ts
2

N∑
k=0

(x̂TkLL
T x̂k + x̂TkLWUrk + UT

rk
W TLT x̂k + UT

rk
W TWUrk)

=
Ts
2

N∑
k=0

((xk − ek)
TLLT (xk − ek) + (xk − ek)

TLWUrk) + Urk)
TW TLT (xk − ek)

+ Urk)
TW TWUrk))

=
Ts
2

N∑
k=0

(xTkLL
Txk − xTkLL

T ek − eTkLL
Txk + eTkLL

T ek + xTkLWUrk − eTkLWUrk

+ UT
rk
W TLTxk − UT

rk
W TLT ek + UT

rk
W TWUrk)

=
Ts
2

N∑
k=0

(xTkLL
Txk + xTkLWUrk + UT

rk
W TLTxk + UT

rk
W TWUrk)

+
Ts
2

N∑
k=0

(−xTkLLT ek − eTkLL
Txk + eTkLL

T ek − eTkLWUrk − UT
rk
W TLT ek)

Edwvo = Edwv + Edoe (180)

Substituting (179) and (180) in (178) we have

ETwvo = Esuwvo − Estwvo − Edwvo

= Esuwv − (Estwv + Estoe)− (Edwv + Edoe)

= Esuwv − Estwv −Edwv −Estoe − Edoe (181)

186

199

Substituting (130) in the ETwvo above results in following

ETwvo = −Estoe − Edoe (182)

Similar to Algorithm 1, in the case of unmeasurable states, the energy-based detection with the

integration of an observer can be summarized by Algorithm 2 below. Figure 68 also shows the block

diagram of the energy-based monitor in the case of unmeasurable plant states. The additional block

for the observer in Figure 68 corresponds to the estimation of the states in Algorithm 2.

Algorithm 2: Energy-Based Attack Detection in the case of unmeasurable states
Input: Vrk ,Urk

Output: Ψ
1 Estimate the states, x̂k
2 Compute the supplied energy, Esuwvo

3 Compute the stored energy, Estwvo

4 Compute the dissipated energy, Edwvo

5 Compute the total energy, Twvo = Esuwvo − Estwvo −Edwvo

6 if ETwvo ̸= 0 then
7 ψ1 =True
8 if Twvo > 0 then
9 ψ2 =Passive

10 else
11 ψ2 =Non-Passive

12 else
13 ψ1 =False

14 Ψ ={ψ1,ψ2}
15 return Ψ

7.4 Simulation Results

In this section, we evaluate the proposed energy-based detection mechanism using simulations. The

system under consideration is a control system composed of a plant and controller that exchange

information over a network in order to cooperatively achieve a specified objective.

187

200

Figure 68: Energy-Based Monitor (Non-Measurable States)

7.4.1 Simulation Setup

The case study involves the velocity control of a single joint robotic arm over a communication

network. We briefly describe the model of the robotic joint and the networked controller. We then

describe the attack detection component which is co-located with the networked controller. We

present various attack scenarios to illustrate the performance of the proposed detection mechanism.

It is assumed that the only information the networked controller receives from the plant is the wave

variable, Vrk , which becomes Vlk at the controller side of the network. Hence the detection mecha-

nism with an integrated observer, as shown in Figure 68, is used in this evaluation.

The simulation of the overall NCS is performed using Matlab/Simulink. The plant, controller,

energy-based monitor, scattering transformation, attack models and communication are implemented

using a combination of Matlab scripts and blocks from the Simulink library. The dynamics of the

plant is described by the discrete-time state-space representation as defined in (105) with a sampling

time of Ts = 0.01s. The parameters for the plant are A=0.9952, B=0.0625, C=0.1214, D=0.0251.

The controller for the robot is a Proportional-Integral (PI) controller and similar to the plant is rep-

resented by the discrete time state space representation defined in (106) with the sampling time

Ts = 0.01s. The parameters for the controller are Ac =1, Bc =0.0625, Cc =0.1, Dc =0.6385. The

main objective of the controller is to modify the behavior of the plant in order to track a reference

velocity trajectory, rk over a communication network.

188

201

7.4.2 Scenarios

First, we present the control of the plant in the nominal case when there are no attacks. We also

present the effects of the network on the system’s energy. Next, we evaluate the behavior of the

system under attack and the ability of the proposed approach to detect the attacks. In the experiments

with attacks, the simulated attacks are injected from the duration, t = 15s to t = 20s

1. Nominal Case: This evaluation considers the absence of attacks on the NCS. In this scenario,

the NCS operates nominally while achieving the tracking objective. Figure 69a depicts the

reference velocity of 0.15rad/s as well as the plant velocity clearly showing that the plant is

able to track the velocity as desired. Figure 69b shows the energy balance of the monitored

plant computed based on the approach described in Section 7.3.2. In order to illustrate the

effect of communication network on the energy-balance, we also co-located the energy-based

detector at the plant side of the network to essentially perform the same total energy com-

putation. The only difference being the delay experience by the monitor co-located with the

controller. From Figure 69b, the energy-balance computed by the local monitor is essentially

zero as expected but the balance computed by the networked monitor has an offset as a result

of the communication network. Hence, this offset value or a more conservative value can be

used to characterize the threshold energy, Eth, which will be non-zero due to network effects.

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Reference and Plant Velocity Plots (Nominal)

Time (s)

V
el

o
ci

ty
 (

ra
d

/s
)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20 25 30 35 40 45 50
−8

−6

−4

−2

0

2

4

6

8
x 10

−5 System Energy (Nominal)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot.

Figure 69: Simulation Results - Nominal Case.

2. Integrity Attacks

189

202

(a) Min Attack on Vrk: In this scenario, we introduce a min integrity attack on the NCS.

We assume the NCS channel from the plant to the controller, transmitting Vrk, is com-

promised and during the attack duration, the attacker replaces the true or actual signal

exchanged with the value of Vrmin . Figure 70a shows that the presence of the attack

results in the degraded reference tracking performance. Figure 70b depicts the total en-

ergy computation clearly indicating the presence of the attack. Additionally, one can

observe that the min integrity attack can be characterize as a passive attack as it leads to

increase in the computed total energy which indicates the dissipation of energy. Based

on the computed energy, passivity of the overall NCS is still guaranteed.

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Reference and Plant Velocity Plots (Min Attack on V

rk
)

Time (s)

V
el

o
ci

ty
 (

ra
d

/s
)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20 25 30 35 40 45 50
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
System Energy (Min Attack on V

rk
)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot.

Figure 70: Simulation Results - Min Attack on Vrk.

(b) Max Energy Attack on Vrk: In this scenario, we introduce a max energy attack on the

NCS. We assume the NCS channel from the plant to the controller, transmitting Vrk,

is compromised and during the attack duration, the attacker replaces the true or actual

signal exchanged with the value of Vra that maximizes the energy dissipated at that

time step. Figure 71a shows that the presence of the attack results in the degraded

reference tracking performance. Figure 71b depicts the total energy computation clearly

indicating the presence of the attack. Additionally, one can observe that as expected the

max energy attack results in an increase in the computed total energy. Based on the

computed energy, passivity of the overall NCS is still guaranteed.

(c) Additive Attack: In this scenario, we introduce an additive integrity attack on the NCS.

In this case, during the attack duration, the attacker introduces an additional bias, α to

190

203

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25
Reference and Plant Velocity Plots (Max Energy Attack on V

rk
)

Time (s)

V
el

o
ci

ty
 (

ra
d

/s
)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20 25 30 35 40 45 50
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
System Energy (Max Energy Attack on V

rk
)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot.

Figure 71: Simulation Results - Max Energy Attack on Vrk.

the true or actual signal exchanged. Figure 72a shows that the presence of the attack

degrades the tracking performance slightly. Figure 72b depicts the total energy com-

putation clearly indicating the presence of the attack. Additionally, one can observe

that the additive integrity attack in this case can be characterize as a non-passive attack

as it leads to a negative value in the computed total energy. In this case passivity of

the overall system is no longer guaranteed although there’s only a slight degradation of

performance in tracking the desired reference.

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Reference and Plant Velocity Plots (Additive Attack on V

rk
)

Time (s)

V
el

o
ci

ty
 (

ra
d

/s
)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20 25 30 35 40 45 50
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−3 System Energy (Additive Attack on V
rk

)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot.

Figure 72: Simulation Results - Additive Attack on Vrk.

(d) Min Attack on the Actuator, uk: In this scenario, we introduce a min integrity attack

on actuator of the plant. We assume the actuator command into the plant, uk, is com-

promised and during the attack duration, the attacker replaces the true or actual signal

exchanged with the value of umin. Figure 73a shows that the presence of the attack

191

204

results in the degraded reference tracking performance. Figure 73b depicts the total en-

ergy computation clearly indicating the presence of the attack. From the energy plots,

one can observe that as expected the min integrity attack on the actuator perturbs both

the local and networked energy monitors, clearly indicating that the attack is perpetuated

locally. From Figure 73b, the min attack on the actuator results in an increase in the sys-

tem energy and can be characterize as a passive attack. In this case the attack does not

destroy passivity of the overall NCS but significantly affects the tracking performance.

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Reference and Plant Velocity Plots (Min Attack on Actuator)

Time (s)

V
el

o
ci

ty
 (

ra
d

/s
)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20 25 30 35 40 45 50
−0.005

0

0.005

0.01

0.015

0.02

0.025
System Energy (Min Attack on Actuator)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot.

Figure 73: Simulation Results - Min Attack on Actuator, uk.

(e) Max Attack on the Sensor, yk: In this scenario, we introduce a max integrity attack on

plant sensor. We assume the sensor signal from the plant, yk, is compromised and dur-

ing the attack duration, the attacker replaces the true or actual signal exchanged with the

value of ymax. Figure 74a shows that the presence of the attack results in the degraded

reference tracking performance. Figure 74b depicts the total energy computation clearly

indicating the presence of the attack. From the energy plots, one can observe that as ex-

pected the max integrity attack on the sensor perturbs both the local and networked en-

ergy monitors, clearly indicating that the attack is perpetuated locally. From Figure 74b,

the max attack on the actuator results in a decrease in the system energy indicating the

injection of excess energy and hence can be characterize as a non-passive attack. Based

on the computed energy, the injected max attack on the sensor leads to the violation

of passivity of the overall NCS, in addition to the observed significant degradation in

performance.

192

205

0 5 10 15 20 25 30 35 40 45 50
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Reference and Plant Velocity Plots (Max Attack on Sensor)

Time (s)

V
el

oc
ity

 (
ra

d/
s)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20 25 30 35 40 45 50
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02
System Energy (Max Attack on Sensor)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot.

Figure 74: Simulation Results - Max Attack on Sensor, yk.

3. Denial-of-service attack on Vrk: In this scenario, we introduce a denial-of-service attack on

the NCS. In this case, during the attack duration, the attacker intentionally discards or erases

the actual signal exchanged. During the attack duration, the attacker erases or discard the

information exchanged over the network based on a simulated Bernoulli random variable, the

probability of erasure for this evaluation was set at 0.2. Figure 75 shows that the presence

of the attack clearly degrades the tracking performance. From Figure 75, one can observe

that the denial-of-service attack can be characterized as passive attack as it leads to a positive

total computed energy and this is in line with the results in Section 7.3.3 defining DoS attacks

as always passive. Hence, passivity is always maintained but the performance in tracking is

deteriorated.

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Reference and Plant Velocity Plots (DoS Attack on V

rk
)

Time (s)

V
el

o
ci

ty
 (

ra
d

/s
)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

3

4

5
x 10

−3 System Energy (DoS Attack on V
rk

)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot Plots.

Figure 75: Simulation Results - DoS Attack on Vrk.

193

206

7.5 Experiments

In this section, we describe the experimental evaluation of the proposed energy-based attack detec-

tion. The evaluation is performed on the velocity control of a networked single robotic joint.

7.5.1 Experimental Setup

The robotic joint under consideration is powered by an AX−12 servo. A proportional-integral (PI)

control law is used to modify the servo’s behavior in order to track a desired reference velocity.

Figure 76 depicts the setup for the experimental evaluation. The experiments are performed on

a single computer with the nodes C1 and C2 in the figure representing the plant side (including

servo interface) and controller sides of the network respectively. Matlab/Simulink’s Real-Time

Windows Target is used for the experiments. The servo interface, scattering transformation and

local processing components run on the node C1 while the controller, the scattering transformation

and the energy-based monitor run on the node C2. The communication between C1 and C2 is

over the local host network using RTWT’s Packet-Input and Output blocks. The plant side of the

network receives the wave variable, Urk from the controller and sends the wave variable, Vrk to the

controller. The energy-based monitor is co-located with the controller. For comparison and also

to evaluate the effect of the network, we also co-located an energy-based monitor with the plant as

well.

The proposed EBAD is designed for linear systems but in this experiment the plant is a servo

controlling the robotic joint. The inherent non-linearity of the servo, together with the noisy velocity

estimates, makes it difficult to directly integrate the EBAD for the servo. Using system identifica-

tion, we obtained an approximate linear model for the servo based on the torque input and the filtered

velocity estimate from the servo. The detector’s dynamics is then designed using the approximated

linear model. The parameters for the linear model used for the servo are A=0.9952, B=0.0625,

C=0.1214, D=0.0251. A sampling period of Ts = 0.01 was used for all the experiments. In the

following section we presents results from the experimental evaluation.

194

207

Figure 76: Experimental Setup for the Evaluation of the Energy-Based Attack Mechanism

7.5.2 Scenarios

First, we present the control of the plant in the nominal case when there are no attacks. We also

present the effects of the network on the system’s energy. Next, we evaluate the behavior of the

system under attack and the ability of the proposed approach to detect the attacks. In the experiments

with attacks, the simulated attacks are injected from the duration, t = 10s to t = 15s

1. Nominal Case: In this experiment, we the absence of simulated attacks on the NCS. Fig-

ure 77a depicts the reference velocity of 0.15rad/s as well as the plant velocity. Due to the

modeling uncertainties, the controlled output tracks the reference within a bound of approx-

imately 0.015rad/s. Figure 77b shows the energy balance of the monitored plant computed

based on the approach described in Section 7.3.2. In order to illustrate the effect of com-

munication network on the energy-balance, we also co-located the energy-based detector at

the plant side of the network to essentially perform the same total energy computation. The

only difference being the delay experienced by the monitor co-located with the controller.

From Figure 77b, the energy-balance computed by the local monitor and that computed by

the networked monitor are almost the same with a small offset as a result of the communica-

tion network. Also, the nominal energy is not zero for the local monitor and this highlights

the effect of model uncertainties of the servo that are not captured by the approximated lin-

ear model. Hence, in order the offset for the networked monitor can be used to characterize

the threshold energy, Eth. In this characterization, when the energy level is above the bound

195

208

we can characterize the attack as being passive and when the computed energy is below this

threshold we can characterize the attack as being non-passive. After multiple runs we set the

Eth to be in the range [−0.014, 0.014].

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Reference and Plant Velocity Plots (Nomincal Case)

Time (s)

V
el

o
ci

ty
 (

ra
d

/s
)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20 25
−2

0

2

4

6

8

10

12
x 10

−3 System Energy (Nominal Case)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot.

Figure 77: Experimental Results - Nominal Case.

2. Integrity Attacks

(a) Min Attack on Vrk: In this experiment, we introduce a min integrity attack on the NCS.

We assume the NCS channel from the plant to the controller, transmitting Vrk, is com-

promised and during the attack duration, the attacker replaces the true or actual signal

exchanged with the value of Vrmin . Figure 78a shows that the presence of the attack

results in the degraded reference tracking performance. Figure 78b depicts the total en-

ergy computation. The energy plot clearly indicates the presence of the attack and based

on the threshold of the networked monitor such an attack is characterized as a passive

attack but the local monitor shown on the same plot characterizes the attack as being

non-passive. This behavior can be attributed to the uncertainties in the approximated

linear model and essentially highlights the need for an accurate model for consistent

attack characterization.

(b) Max Energy Attack on Vrk: In this experiment, we introduce a simulated max energy

attack on the NCS. We assume the NCS channel from the plant to the controller, trans-

mitting Vrk, is compromised and during the attack duration, the attacker replaces the

true or actual signal exchanged with the value of Vra that maximizes the energy dissi-

196

209

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Reference and Plant Velocity Plots (Min Attack on V

rk
)

Time (s)

V
el

o
ci

ty
 (

ra
d

/s
)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20 25
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05
System Energy (Min Attack on V

rk
)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot.

Figure 78: Experimental Results - Min Attack on Vrk.

pated at that time step. Figure 79a shows that the presence of the attack results in the

degraded reference tracking performance. Figure 78b depicts the total energy compu-

tation clearly indicating the presence of the attack. Additionally, one can observe that

as expected the max energy attack results in an increase in the computed total energy.

Based on the computed energy, passivity of the overall NCS is still guaranteed.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Reference and Plant Velocity Plots (Max Energy Attack on V

rk
)

Time (s)

V
el

o
ci

ty
 (

ra
d

/s
)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20 25
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
System Energy (Max Energy Attack on V

rk
)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot.

Figure 79: Experimental Results - Max Energy Attack on Vrk.

(c) Additive Attack: In this experiment, we introduce an additive integrity attack on the

NCS. In this case, during the attack duration, the attacker introduces an additional bias,

α to the true or actual signal exchanged. Figure 80a shows that the presence of the

attack degrades the tracking performance slightly. Figure 80b depicts the total energy

computation clearly indicating the presence of the attack. Additionally, one can observe

that the additive integrity attack in this case can be characterize as a passive attack as

197

210

it leads to a computed energy value larger than the nominal threshold. In this case

passivity of the overall system is still guaranteed.

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Reference and Plant Velocity Plots (Additive Attack on V

rk
)

Time (s)

V
el

o
ci

ty
 (

ra
d

/s
)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20 25
−2

0

2

4

6

8

10

12

14

16
x 10

−3 System Energy (Additive Attack on V
rk

)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot.

Figure 80: Experimental Results - Additive Attack on Vrk.

(d) Min Attack on the Actuator, uk: In this experiment, we introduce a min integrity attack

on actuator of the plant. We assume the actuator command into the plant, uk, is com-

promised and during the attack duration, the attacker replaces the true or actual signal

exchanged with the value of umin. Figure 81a shows that the presence of the attack

results in the degraded reference tracking performance. Figure 81b depicts the total en-

ergy computation clearly indicating the presence of the attack. From the energy plots,

one can observe that as expected the min integrity attack on the actuator perturbs both

the local and networked energy monitors, clearly indicating that the attack is perpetuated

locally. From Figure 81b, the min attack on the actuator results in an increase in the sys-

tem energy and can be characterize as a passive attack. In this case the attack does not

destroy passivity of the overall NCS but significantly affects the tracking performance.

(e) Max Attack on the Sensor, yk: In this scenario, we introduce a max integrity attack on

plant sensor. We assume the sensor signal from the plant, yk, is compromised and dur-

ing the attack duration, the attacker replaces the true or actual signal exchanged with the

value of ymax. Figure 82a shows that the presence of the attack results in the degraded

reference tracking performance. Figure 82b depicts the total energy computation clearly

indicating the presence of the attack. From the energy plots, one can observe that as ex-

198

211

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Reference and Plant Velocity Plots (Min Attack on Actuator)

Time (s)

V
el

o
ci

ty
 (

ra
d

/s
)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
System Energy (Min Attack on Actuator)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot.

Figure 81: Experimental Results - Min Attack on Actuator, uk.

pected the max integrity attack on the sensor perturbs both the local and networked en-

ergy monitors, clearly indicating that the attack is perpetuated locally. From Figure 82b,

the max attack on the actuator results in a decrease in the system energy indicating the

injection of excess energy and hence can be characterize as a non-passive attack. Based

on the computed energy, the injected max attack on the sensor leads to the violation

of passivity of the overall NCS, in addition to the observed significant degradation in

performance.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Reference and Plant Velocity Plots (Max Attack on Sensor)

Time (s)

V
el

o
ci

ty
 (

ra
d

/s
)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
System Energy (Max Attack on Sensor)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot.

Figure 82: Experimental Results - Max Attack on Sensor, yk.

3. Denial-of-service attack on Vrk: In this scenario, we introduce a denial-of-service attack on

the NCS. In this case, during the attack duration, the attacker intentionally discards or erases

the actual signal exchanged. During the attack duration, the attacker erases or discard the

199

212

information exchanged over the network based on a simulated Bernoulli random variable, the

probability of erasure for this evaluation was set at 20%. Figure 83 shows that the presence

of the attack. From Figure 83, one can observe that the denial-of-service attack can be char-

acterized as passive attack as it leads to a positive total computed energy and this is in line

with the results in Section 7.3.3 defining DoS attacks as always passive. Hence, passivity is

always maintained but the impact of DoS is not visible in the tracking performance due to the

filtering of the noisy velocity estimates.

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Reference and Plant Velocity Plots (DoS Attack on V

rk
)

Time (s)

V
el

o
ci

ty
 (

ra
d

/s
)

Reference Velocity
Plant Velocity

(a) Velocity Plots.

0 5 10 15 20 25
−2

0

2

4

6

8

10

12

14

16
x 10

−3 System Energy (DoS Attack on V
rk

)

Time (s)

E
ne

rg
y

Monitor (Local)
Monitor (Networked)

(b) Energy Balance Plot Plots.

Figure 83: Experimental Results - DoS Attack on Vrk.

7.6 Summary

Due to increased attacks on CPS, there is an increased effort towards approaches to detect and se-

cure CPS from cyber attacks. We present an energy-based attack detector for a class of CPS that

are considered dissipative. We provided analytical results to show the detector can successfully

detect attacks. Using well-known attack models we characterize attacks that can be considered

either passive or non-passive based on their impact on the evaluated system energy. We quantita-

tively evaluate the performance of the proposed mechanism using simulations and experiments on

a networked single joint robotic arm with the introduction of artificially simulated attacks.

200

213

CHAPTER 8

CONCLUSIONS

The increasing pervasiveness of NCS architectures in our daily lives imposes the need for their

correct and dependable operation. The complexity due to the heterogeneity of these NCS architec-

tures constrains the achievable and desirable benefits that can be derived from these systems. The

work presented in this dissertation provides some fundamental results towards addressing the chal-

lenges involving the modeling, design, analysis and evaluation of dependable NCS architectures.

8.1 Summary of Contributions

The underlying principle of the work presented in this dissertation is the use of the decoupling

strategies to simplify various integration challenges in construction of NCS. The contributions in

this dissertation focus on addressing the fundamental challenges in NCS, including adverse network

effects, complexity in modeling, analysis and evaluation of NCS, as well as ensuring the secure

operation of NCS. We summarize our contributions in the following.

Compositional Modeling, Design and Analysis of NCS using Passivity. We present a DSML,

PaNeCS, that simplifies the “correct-by-construction”’ design of passive networked control sys-

tems. PaNeCS is integrated with a passivity component analysis tool, which together with encoded

passivity constraints in the DSML structural semantics significantly reduces the burden typically

involved in analyzing NCS for stability. Integrated model interpreters in PaNeCS, facilitates rapid

prototyping of passivity-based NCS and allow for quick model reconfiguration, code generation and

evaluation of designed NCS using simulations or performing actual experiments. Additionally, we

present simulation results on the networked control of linear plants as well as experimental results

on a networked multi-robot system designed using PaNeCS.

Performance-Aware Efficient Resource Utilization with Stability Guarantees. We present

a passivity-based adaptive sampling framework for NCS that guarantees passivity while efficiently

utilizing scarce network resources. We present a novel sample-and-hold scheme which allows vari-

able sampling interval, while ensuring passivity. The sample-and-hold components essentially en-

able the decoupling of stability from the integration of performance in the design framework. The

201

214

framework allows for any performance approach used for the variability of the sampling interval

but for clear illustration we present the architecture for the specific case of trajectory tracking. We

prove the passivity of the sample-and-hold components as well as passivity of the overall networked

control architecture. Also, for the specific performance objective of tracking, we prove that the pro-

posed architecture achieves the tracking objective while potentially using less resources based on a

function of the tracking error, compared to the traditional fixed sampling approaches. Finally, we

present simulation and experimental results using a case study on the trajectory tracking control of

a networked robotic manipulator in a hierarchical networked control system.

Evaluation of Networked Control Systems. We present an integrated integrated modeling and

simulation tool, NCSWT, for the evaluation of NCS. Simulation has been generally accepted as a

powerful tool for system evaluation. NCSWT integrates Matlab/Simulink and ns-2 for modeling

and simulation of NCS using the High Level Architecture (HLA) standard. We present the two

parts of the tool, the design-time models and the run-time components. The design-time models use

Model Integrated Computing (MIC) to define HLA-based model constructs such as federates rep-

resenting the simulators and interactions representing the communication between the simulators.

The design-time models represent the control system dynamics and networking system behaviors in

order to facilitate the run-time simulation of a NCS. The run-time components represent the main

software components and interfaces for the actual realization of a NCS simulation using the HLA

framework. Our implementation of the NCSWT based on HLA guarantees accurate time synchro-

nization and data communication. We demonstrate the capabilities of the tool using case studies

and also provided an evaluation of tool.

Energy-Based Attack Detection Towards Ensuring Dependable NCS Operation. We for-

mulate the energy-based attack detector (EBAD) for NCS. We demonstrate that EBAD solves the

detection problem. Using well-known attack models we provide conditions under which attacks can

be considered either passive or non-passive based on their impact on the evaluated system energy.

We quantitatively evaluate the performance of the proposed mechanism using simulations. In ad-

dition, we provide experimental results to demonstrate the potential application of the detector to

real-world systems.

202

215

8.2 Future directions

The work in this dissertation provides opportunities for several directions for future work. In

PaNeCS, the concept of passivity indices can be integrated in the tool to improve the passivity

analysis by not just indicating that a system is passive/strictly output passive/strictly input passive

but also indicating the level of passivity, that is quantifying the excess or lack of passivity. This

characterization can enable a domain designer in composing a suitable controller or component for

integration in NCS. Also, the efficient analysis of nonlinear systems in a model-based framework in

a constructive approach is an area of interest.

Application of adaptive sampling in cooperative control strategies which involves a network

of agents interacting over a scarce communication network is an interesting direction to pursue.

Stability guarantees and satisfaction of performance objectives is very important in these networked

systems but the scarcity of networked resources is often neglected. The integration of passivity and

adaptive sampling in such a framework can be exploited as a mechanism towards achieving efficient

and yet robust group objectives.

The present energy-based attack monitor in the current work is formulated and modeled for

linear systems. As observed from the experimental evaluation involving the servo with inherent

nonlinearities and noise, a considerably accurate model of the system under control is required.

A natural extension of the current approach is to consider and characterize the impact of noise

and determine analytical bounds for the detector’s performance. Also, extension to the case of

direct application to nonlinear systems is an area of strong interest. From another perspective, the

characterization of attacks as passive or non-passive using the current EBAD formulation is rather

general, a more quantitatively significant approach will be to use the concept of passivity indices to

characterize the condition of a system under attack based on the estimation of the system’s IFP and

OFP indices.

The ultimate goal of the detection approach is to provide enough information about the system’s

current status in order to determine if reconfiguration or mitigation needs to be applied in the pres-

ence of attacks. We would like to explore various potential mitigation strategies the can utilize the

information from the detector to mitigate the impact of the attack not only for non-passive attacks

but also for passive attacks which also affect overall system performance.

203

216

REFERENCES

[1] Lee, E.A.: Cyber physical systems: Design challenges. In: Proceedings of IEEE Symposium
on Object Oriented Real-Time Distributed Computing. ISORC ’08, Washington, DC, USA,
IEEE Computer Society (2008) 363–369

[2] Antsaklis, P., Baillieul, J.: Special issue on technology of networked control systems. Pro-
ceedings of the IEEE 95(1) (2007) 5–8

[3] Lian, F.L., Moyne, J., Tilbury, D.: Network design consideration for distributed control
systems. IEEE Transactions on Control Systems Technology, 10(2) (2002) 297–307

[4] Eyisi, E., Porter, J., Hall, J., Kottenstette, N., Koutsoukos, X., Sztipanovits, J.: Panecs: A
modeling language for passivity-based design of networked control systems. In: In 2nd In-
ternational Workshop on Model Based Architecting and Construction of Embedded Systems
(ACES-MB 2009). (2009) 2741

[5] Eyisi, E., Porter, J., Kottenstette, N., Koutsoukos, X., Sztipanovits, J.: Panecs: A modeling
language for passivity-based design of networked control systems. In: Control Automation
(MED), 2011 19th Mediterranean Conference on. (2011) 1002 –1007

[6] Koutsoukos, X., Kottenstette, N., Hall, J., Eyisi, E., Leblanc, H., Porter, J., Sztipanovits, J.:
A passivity approach for model-based compositional design of networked control systems.
ACM Trans. Embed. Comput. Syst. 11(4) (2013) 75:1–75:31

[7] Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., Karsai, G.:
Composing domain-specific design environments. Computer 34(11) (2001) 44 –51

[8] Eyisi, E., Koutsoukos, X., Kottenstette, N.: Passivity-based trajectory tracking control with
adaptive sampling over a wireless network. In: Resilient Control Systems (ISRCS), 2012 5th
International Symposium on. (2012) 130–136

[9] Bai, J., Eyisi, E.P., Qiu, F., Xue, Y., Koutsoukos, X.D.: Optimal cross-layer design of
sampling rate adaptation and network scheduling for wireless networked control systems.
In: Cyber-Physical Systems (ICCPS), 2012 IEEE/ACM Third International Conference on.
(2012) 107 –116

[10] Bai, J., Eyisi, E., Xue, Y., Koutsoukos, X.: Distributed sampling rate adaptation for net-
worked control systems. In: Computer Communications Workshops (INFOCOM WKSHPS),
2011 IEEE Conference on. (2011) 768 –773

[11] Eyisi, E., Bai, J., Riley, D., Weng, J., Yan, W., Xue, Y., Koutsoukos, X., Sztipanovits, J.: Nc-
swt: An integrated modeling and simulation tool for networked control systems. Simulation
Modelling Practice and Theory 27(0) (2012) 90 – 111

[12] Eyisi, E., Bai, J., Riley, D., Weng, J., Wei, Y., Xue, Y., Koutsoukos, X., Sztipanovits, J.:
Ncswt: an integrated modeling and simulation tool for networked control systems. In: Pro-
ceedings of the 15th ACM international conference on Hybrid Systems: Computation and
Control. HSCC ’12, New York, NY, USA, ACM (2012) 287–290

204

217

[13] Riley, D., Eyisi, E., Bai, J., Koutsoukos, X., Xue, Y., Sztipanovits, J.: Networked Control
System Wind Tunnel (NCSWT) - An evaluation tool for networked multi-agent systems. In:
Proc. of SIMUTools. (2011)

[14] LeBlanc, H., Eyisi, E., Kottenstette, N., Koutsoukos, X., Sztipanovits, J.: A passivity-based
approach to deployment in multi-agent networks. In: International Conference on Informatics
in Control, Automation and Robotics (ICINCO). (2010) 53–62

[15] Tipsuwan, Y., Chow, M.Y.: Control methodologies in networked control systems. Control
Engineering Practice 11(10) (2003) 1099 – 1111

[16] Huang, D., Nguang, S.K.: State feedback control of uncertain networked control systems
with random time delays. IEEE Transactions on Automatic Control, 53(3) (2008) 829–834

[17] Lazar, C., Carari, S.: A remote-control engineering laboratory. IEEE Transactions on Indus-
trial Electronics, 55(6) (2008) 2368–2375

[18] Tipsuwan, Y., Chow, M.Y.: Network-based controller adaptation based on qos negotiation
and deterioration. In: Industrial Electronics Society, 2001. IECON ’01. The 27th Annual
Conference of the IEEE. Volume 3. (2001) 1794–1799

[19] Ortega, R., Spong, M.W.: Adaptive motion control of rigid robots: A tutorial. In: 27th IEEE
Conf. on Decision and Control. (1988) 1575–1584

[20] Slotine, J.J.E., Li, W.: Adaptive manipulator control: A case study. IEEE Trans. on Aut.
Control 33(11) (1988) 995 –1003

[21] Tipsuwan, Y., Chow, M.Y.: Gain adaptation of networked mobile robot to compensate qos
deterioration. In: IECON 02 [Industrial Electronics Society, IEEE 2002 28th Annual Con-
ference of the]. Volume 4. (2002) 3146–3151

[22] Niemeyer, G., Slotine, J.J.E.: Telemanipulation with time delays. The International Journal
of Robotics Research 23(9) (2004) 873–890

[23] Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: An historical survey. Automatica
42(12) (2006) 2035 – 2057

[24] Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in fixed and switching networks. IEEE
Transactions on Automatic Control, 52(5) (2007) 863 –868

[25] Jiangdagger, Z.P., Nijmeijer, H.: Tracking control of mobile robots: A case study in back-
stepping. Automatica 33(7) (1997) 1393 – 1399

[26] Zampieri, S.: Trends in networked control systems. In: 17th World Congress The Interna-
tional Federation of Automatic Control. (2008) 2886–2894

[27] Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a
survey. Computer Networks 38(4) (2002) 393 – 422

[28] Gharavi, H., Kumar, S.: Special issue on sensor networks and applications. Proceedings of
the IEEE 91(8) (2003) 1151–1153

205

218

[29] Olfati-Saber, R., Murray, R.: Consensus problems in networks of agents with switching
topology and time-delays. IEEE Transactions onAutomatic Control 49(9) (2004) 1520 –
1533

[30] Spanos, D.P., Olfati-Saber, R., Murray, R.M.: Approximate distributed kalman filtering in
sensor networks with quantifiable performance. In: Proceedings of the 4th international
symposium on Information processing in sensor networks. IPSN ’05, Piscataway, NJ, USA,
IEEE Press (2005)

[31] Olfati-saber, R.: Distributed kalman filtering and sensor fusion in sensor networks. In:
Network Embedded Sensing and Control, volume LNCIS 331, Springer-Verlag (2006) 157–
167

[32] Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent
systems. Proceedings of the IEEE 95(1) (2007) 215–233

[33] Ren, W., Beard, R.: Consensus seeking in multiagent systems under dynamically changing
interaction topologies. IEEE Transactions on Automatic Control 50(5) (2005) 655 – 661

[34] Xiao, F., Wang, L.: Consensus protocols for discrete-time multi-agent systems with time-
varying delays. Automatica 44(10) (2008) 2577 – 2582

[35] Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans-
actions on Information Theory 52(6) (2006) 2508 – 2530

[36] Sinopoli, B., Sharp, C., Schenato, L., Schaffert, S., Sastry, S.: Distributed control applica-
tions within sensor networks. Proceedings of the IEEE 91(8) (2003) 1235 – 1246

[37] LeBlanc, H.J., Koutsoukos, X.D.: Consensus in networked multi-agent systems with adver-
saries. In: Proceedings of the 14th international conference on Hybrid systems: computation
and control. (HSCC ’11), Chicago, IL (2011) 281–290

[38] LeBlanc, H.J., Koutsoukos, X.D.: Low complexity resilient consensus in networked multi-
agent systems with adversaries. In: Proceedings of the 15th international conference on
Hybrid systems: computation and control. (HSCC ’12), Beijing, China (2012)

[39] Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric
patterns. SIAM Journal on Computing 28 (1999) 1347–1363

[40] Klavins, E.: Communication complexity of multi-robot systems. In: Algorithmic Founda-
tions of Robotics V. Volume 7 of Springer Tracts in Advanced Robotics. Springer Berlin /
Heidelberg (2004) 275–292

[41] Martinez, S., Bullo, F., Cortes, J., Frazzoli, E.: On synchronous robotic networks;part i:
Models, tasks, and complexity. Automatic Control, IEEE Transactions on 52(12) (2007)
2199 –2213

[42] Martinez, S., Bullo, F., Cortes, J., Frazzoli, E.: On synchronous robotic networks;part ii:
Time complexity of rendezvous and deployment algorithms. Automatic Control, IEEE Trans-
actions on 52(12) (2007) 2214 –2226

[43] Sepulchre, R., Paley, D.A., Leonard, N.E.: Stabilization of planar collective motion: All-to-
all communication. Automatic Control, IEEE Transactions on 52(5) (2007) 811 –824

206

219

[44] Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using
nearest neighbor rules. Automatic Control, IEEE Transactions on 48(6) (2003) 988 – 1001

[45] Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE
Transactions on Automatic Control 51(3) (2006) 401 – 420

[46] Gazi, V., Passino, K.: Stability analysis of swarms. Automatic Control, IEEE Transactions
on 48(4) (2003) 692 – 697

[47] Cao, Y., Fukunaga, A., Kahng, A.: Cooperative mobile robotics: Antecedents and directions.
Autonomous Robots 4 (1997) 226–234

[48] Klavins, E., Ghrist, R., Lipsky, D.: A grammatical approach to self-organizing robotic sys-
tems. IEEE Transactions on Automatic Control 51(6) (2006) 949 – 962

[49] Ganguli, A., Cortes, J., Bullo, F.: Distributed deployment of asynchronous guards in art
galleries. In: American Control Conference, 2006. (2006) 6 pp.

[50] Cortes, J., Martinez, S., Bullo, F.: Robust rendezvous for mobile autonomous agents via
proximity graphs in arbitrary dimensions. IEEE Transactions on Automatic Control 51(8)
(2006) 1289 –1298

[51] Marshall, J., Broucke, M., Francis, B.: Formations of vehicles in cyclic pursuit. IEEE
Transactions on Automatic Control 49(11) (2004) 1963 – 1974

[52] Kelly, F.P., Maulloo, A.K., Tan, D.K.H.: Rate control for communication networks: Shadow
prices, proportional fairness and stability. The Jour. of the Operational Research Society
49(3) (1998) 237–252

[53] Low, S., Lapsley, D.: Optimization flow control. i. basic algorithm and convergence.
IEEE/ACM Transactions on Networking 7(6) (1999) 861 –874

[54] Mascolo, S.: Congestion control in high-speed communication networks using the smith
principle. Automatica 35(12) (1999) 1921 – 1935

[55] Hollot, C., Misra, V., Towsley, D., Gong, W.: Analysis and design of controllers for aqm
routers supporting tcp flows. IEEE Transactions on Automatic Control 47(6) (2002) 945
–959

[56] Deb, S., Srikant, R.: Rate-based versus queue-based models of congestion control. IEEE
Transactions on Automatic Control 51(4) (2006) 606 – 619

[57] Paganini, F., Wang, Z., Doyle, J., Low, S.: Congestion control for high performance, stability,
and fairness in general networks. Networking, IEEE/ACM Transactions on 13(1) (2005) 43
– 56

[58] Basar, T., Srikant, R.: A stackelberg network game with a large number of followers. Journal
of Optimization Theory and Applications 115 (2002) 479–490

[59] Alpcan, T., Basar, T.: A globally stable adaptive congestion control scheme for internet-style
networks with delay. Networking, IEEE/ACM Transactions on 13(6) (2005) 1261 – 1274

[60] Fan, X., Arcak, M., Wen, J.T.: Robustness of network flow control against disturbances and
time-delay. Systems and Control Letters 53(1) (2004) 13 – 29

207

220

[61] Fan, X., Alpcan, T., Arcak, M., Wen, T., Baar, T.: A passivity approach to game-theoretic
cdma power control. Automatica 42(11) (2006) 1837 – 1847

[62] Yue, D., Han, Q., Lam, J.: Network-based robust control of systems with uncertainty. Auto-
matica 41(6) (2005) 999–1007

[63] Rangwala, S., Jindal, A., Jang, K., Psounis, K., Govindan, R.: Neighborhood-centric con-
gestion control for multi-hop wireless mesh networks. ACM/IEEE Trans. on Networking
(2011)

[64] Eryilmaz, A., Srikant, R.: Fair resource allocation in wireless networks using queue-length-
based scheduling and congestion control. IEEE/ACM Trans. Netw. 15(6) (2007) 1333–1344

[65] Yu, Y., Giannakis, G.: Cross-layer congestion and contention control for wireless ad hoc
networks. IEEE Trans. Wirel. Commun. 7(1) (2008) 37–42

[66] Xue, Y., Li, B., Nahrstedt, K.: Optimal resource allocation in wireless ad hoc networks: a
price-based approach. Mobile Computing, IEEE Transactions on 5(4) (2006) 347 – 364

[67] Gupta, R., Chow, M.Y.: Networked control system: Overview and research trends. IEEE
Transactions on Industrial Electronics 57(7) (2010) 2527–2535

[68] Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., Sastry, S.: Foundations of control
and estimation over lossy networks. Proceedings of the IEEE 95(1) (2007) 163 –187

[69] Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control
systems. Proceedings of the IEEE 95(1) (2007) 138–162

[70] Havlevi, Y., Ray, A.: Integrated communication and control systems Part i-analysis. Journal
of Dynamic Systems, Measurement and Control 110(4) (1988) 367373

[71] Ray, A., Halevi, Y.: Integrated communication and control systems: Part ii-design consider-
ations. In: Dynamic Systems, Measurement and Control. Volume 110. (1988) 374–381

[72] Liou, L., Ray, A.: Integrated communication and control systems Part iii-nonidentical sensor
and controller sampling. Journal of Dynamic Systems, Measurement and Control 112(3)
(1990) 357364

[73] Luck, R., Ray, A.: An observer-based compensator for distributed delays. Automatica 26(5)
(1990) 903 – 908

[74] Nilsson, J.: Real-time control systems with delays. PhD thesis, Lund Institute of Technology
(1998)

[75] Walsh, G., Beldiman, O., Bushnell, L.: Asymptotic behavior of networked control systems.
In: Control Applications, 1999. Proceedings of the 1999 IEEE International Conference on.
Volume 2. (1999) 1448 –1453

[76] Walsh, G., Ye, H., Bushnell, L.: Stability analysis of networked control systems. In: Ameri-
can Control Conference, 1999. Proceedings of the 1999. Volume 4. (1999) 2876 –2880

[77] Hong, S.: Scheduling algorithm of data sampling times in the integrated communication and
control systems. Control Systems Technology, IEEE Transactions on 3(2) (1995) 225 –230

208

221

[78] Goktas, F.: ”distributed control of systems over communication networks”. PhD. dissertation,
University of Pennsylvania. (2000)

[79] Almutairi, N., Chow, M.Y., Tipsuwan, Y.: Network-based controlled dc motor with fuzzy
compensation. In: Industrial Electronics Society, 2001. IECON ’01. The 27th Annual Con-
ference of the IEEE. Volume 3. (2001) 1844 –1849 vol.3

[80] Zadeh, L.: Outline of a new approach to the analysis of complex systems and decision
processes. Systems, Man and Cybernetics, IEEE Transactions on SMC-3(1) (1973) 28 –44

[81] Nešic, D., Liberzon, D.: A Unified Framework for Design and Analysis of Networked and
Quantized Control Systems. IEEE Transactions on Automatic Control 54(4) (2009) 732–747

[82] Brockett, R., Liberzon, D.: Quantized feedback stabilization of linear systems. IEEE Trans-
actions on Automatic Control 45(7) (2000) 1279–1289

[83] Skaf, J., Boyd, S.: Analysis and synthesis of state-feedback controllers with timing jitter.
IEEE Transactions on Automatic Control 54(3) (2007) 652 – 657

[84] Bhave, A., Krogh, B.: Performance bounds on state-feedback controllers with network delay.
In: 47th IEEE Conference on Decision and Control. (2008) 4608–4613

[85] Pajic, M., Sundaram, S., Pappas, G., Mangharam, R.: The wireless control network: A new
approach for control over networks. IEEE Transactions on Automatic Control 56(10) (2011)
2305 –2318

[86] Cloosterman, M., Hetel, L., van de Wouw, N., Heemels, W., Daafouz, J., Nijmeijer, H.:
Controller synthesis for networked control systems. Automatica 46(10) (2010) 1584 – 1594

[87] Li, H., Sun, Z., Chow, M.Y., Sun, F.: Gain-scheduling-based state feedback integral control
for networked control systems. IEEE Transactions on Industrial Electronics 58(6) (2011)
2465 –2472

[88] Onat, A., Naskali, T., Parlakay, E., Mutluer, O.: Control over imperfect networks: Model-
based predictive networked control systems. IEEE Transactions on Industrial Electronics
58(3) (2011) 905 –913

[89] Zhao, Y.B., Liu, G.P., Rees, D.: Design of a packet-based control framework for networked
control systems. IEEE Transactions on Control Systems Technology 17(4) (2009) 859 –865

[90] Funda, J., Paul, R.P.: A Symbolic Teleoperator Interface For Time-delayed Underwater
Robot Manipulation. ’Ocean Technologies and Opportunities in the Pacific for the 90’s’.
(1991)

[91] Yoon, W.K., Goshozono, T., Kawabe, H., Kinami, M., Tsumaki, Y., Uchiyama, M., Oda,
M., Doi, T.: Model-based space robot teleoperation of ets-vii manipulator. Robotics and
Automation, IEEE Transactions on 20(3) (2004) 602 – 612

[92] Madhani, A., Niemeyer, G., Salisbury, J.K., J.: The black falcon: a teleoperated surgical
instrument for minimally invasive surgery. In: Intelligent Robots and Systems, 1998. Pro-
ceedings., 1998 IEEE/RSJ International Conference on. Volume 2. (1998) 936 –944

209

222

[93] Lim, J., Ko, J., Lee, J.: Internet-based teleoperation of a mobile robot with force-reflection.
In: Control Applications, 2003. CCA 2003. Proceedings of 2003 IEEE Conference on. Vol-
ume 1. (2003) 680 – 685

[94] Wei, W., Kui, Y.: Teleoperated manipulator for leak detection of sealed radioactive sources.
In: Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Con-
ference on. Volume 2. (2004) 1682 – 1687

[95] Burdea, G., Coiffet, P.: Virtual Reality Technology. John Wiley, New York (1994)

[96] Niemeyer, G., Slotine, J.J.: Stable adaptive teleoperation. IEEE Journal of Oceanic Engi-
neering 16(1) (1991) 152–162

[97] Berestesky, P., Chopra, N., Spong, M.W.: Discrete time passivity in bilateral teleoperation
over the internet. Proceedings IEEE International Conference on Robotics and Automation
(ICRA) (5) (2004) 4557–4564

[98] Chopra, N., Berestesky, P., Spong, M.: Bilateral teleoperation over unreliable communication
networks. IEEE Transactions on Control Systems Technology 16(2) (2008) 304–313

[99] van der Schaft, A.: L2-Gain and Passivity in Nonlinear Control. Springer-Verlag New York,
Inc., Secaucus, NJ, USA (1999)

[100] Stramigioli, S., Secchi, C., van der Schaft, A.J., Fantuzzi, C.: Sampled data systems passivity
and discrete port-Hamiltonian systems. IEEE Transactions on Robotics 21(4) (2005) 574 –
587

[101] Hannaford, B., Ryu, J.H.: Time-domain passivity control of haptic interfaces. IEEE Trans-
actions on Robotics and Automation 18(1) (2002) 1–10

[102] Gao, H., Chen, T., Chai, T.: Passivity and passification of networked control systems. SIAM
Journal of Control and Optimization 46(4) (2008) 1299–1322

[103] Matiakis, T., Hirche, S., Buss, M.: The scattering transformation for networked control
systems. In: Proceedings of the IEEE Conference on Control Applications (CCA). (2005)
705–710

[104] Chopra, N.: Passivity results for interconnected systems with time delay. In: 47th IEEE
Conference on Decision and Control. (2008)

[105] Hirche, S., Matiakis, T., Buss, M.: A distributed controller approach for delay-independent
stability of networked control systems. Automatica 45(8) (2009) 1828–1836

[106] Zames, G.: On the input-output stability of time-varying nonlinear feedback systems. i.
conditions derived using concepts of loop gain, conicity and positivity. IEEE Transactions
on Automatic Control AC-11(2) (1966) 228–238

[107] Kottenstette, N., Koutsoukos, X., Hall, J., Sztipanovits, J., Antsaklis, P.: Passivity-based
design of wireless networked control systems for robustness to time-varying delays. In:
Real-Time Systems Symposium, Washington, DC, USA (2008) 15–24

[108] Kottenstette, N., LeBlanc, H., Eyisi, E., Koutsoukos, X.: Multi-rate networked control of
conic (dissipative) systems. In: American Control Conference (ACC). (2011) 274–280

210

223

[109] Kottenstette, N., Antsaklis, P.: Control of multiple networked passive plants with delays and
data dropouts. In: American Control Conference, Seattle, Washington (2008) 3126–3132

[110] Fettweis, A.: Wave digital filters: theory and practice. Proceedings of the IEEE 74(2) (1986)
270 – 327

[111] Kottenstette, N., Hall, J., Koutsoukos, X., Antsaklis, P., Sztipanovits, J.: Digital control of
multiple discrete passive plants over networks. International Journal of Systems, Control and
Communications 3(2) (2011) 194–228

[112] Kottenstette, N., Chopra, N.: Lm2-stable digital-control networks for multiple continuous
passive plants. 1st IFAC Workshop on Estimation and Control of Networked Systems (Nec-
Sys’09) (2009) 120–125

[113] LeBlanc, H.J., Eyisi, E., Kottenstette, N., Koutsoukos, X.D., Sztipanovits, J.: Synchronized
deployment of networked multi-agent systems with network uncertainties: A passivity ap-
proach. Journal of Control Science and Engineering (2011) submitted and under review.

[114] Franklin, G.F., Powel, J.D., Workman, M.L.: Digital Control of Dynamic Systems. Addison
Wesley (1997)

[115] Astrom, K., Bernhardsson, B.: Comparison of riemann and lebesgue sampling for first order
stochastic systems. In: 41st IEEE Conf. on Decision and Control. (2002) 2011 – 2016

[116] Arzen, K.: A simple event based pid controller. In: Proc. of 14th IFAC World Congress.
(1999) 423 – 428

[117] Hristu-Varsakelis, D., Kumar, P.: Interrupt-based feedback control over a shared communi-
cation medium. In: Decision and Control, 2002, Proceedings of the 41st IEEE Conference
on. Volume 3. (2002) 3223 – 3228

[118] Tabuada, P., Wang, X.: Preliminary results on state-trigered scheduling of stabilizing control
tasks. In: Decision and Control, 2006 45th IEEE Conference on. (2006) 282 –287

[119] Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. Automatic
Control, IEEE Transactions on 52(9) (2007) 1680 –1685

[120] Wang, X., Lemmon, M.: Event-triggering in distributed networked control systems. Auto-
matic Control, IEEE Transactions on 56(3) (2011) 586 –601

[121] Heemels, W., Donkers, M., Teel, A.: Periodic event-triggered control based on state feed-
back. In: Decision and Control and European Control Conference (CDC-ECC), 2011 50th
IEEE Conference on. (2011) 2571 –2576

[122] Otanez, P., Moyne, J., Tilbury, D.: Using deadbands to reduce communication in networked
control systems. In: American Control Conference, 2002. Proceedings of the 2002. Volume 4.
(2002) 3015 – 3020

[123] Yook, J., Tilbury, D., Soparkar, N.: Trading computation for bandwidth: reducing commu-
nication in distributed control systems using state estimators. Control Systems Technology,
IEEE Transactions on 10(4) (2002) 503 –518

[124] Hirche, S., Buss, M., Hinterseer, P., Steinbach, E.: Towards deadband control in networked
teleoperation systems. In: IN: PROCEEDINGS OF THE 16.TH IFAC WORLD. (2005)

211

224

[125] Heemels, W.P.M.H., Sandee, J.H., Van Den Bosch, P.P.J.: Analysis of event-driven con-
trollers for linear systems. International Journal of Control 81(4) (2008) 571–590

[126] Ploennigs, J., Vasyutynskyy, V., Kabitzsch, K.: Comparative study of energy-efficient sam-
pling approaches for wireless control networks. Industrial Informatics, IEEE Transactions on
6(3) (2010) 416 –424

[127] Henningsson, T., Johannesson, E., Cervin, A.: Sporadic event-based control of first-order
linear stochastic systems. Automatica 44(11) (2008) 2890 – 2895

[128] Rabi, M., Johansson, K., Johansson, M.: Optimal stopping for event-triggered sensing and
actuation. In: Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. (2008)
3607 –3612

[129] Molin, A., Hirche, S.: Structural characterization of optimal event-based controllers for
linear stochastic systems. In: Decision and Control (CDC), 2010 49th IEEE Conference on.
(2010) 3227 –3233

[130] Yu, H., Antsaklis, P.J.: Event-triggered output feedback control for networked control sys-
tems using passivity: Achieving stability in the presence of communication delays and signal
quantization. Automatica 49(1) (2013) 30 – 38

[131] Dimarogonas, D., Frazzoli, E., Johansson, K.: Distributed event-triggered control for multi-
agent systems. Automatic Control, IEEE Transactions on 57(5) (2012) 1291 –1297

[132] Seyboth, G., Dimarogonas, D., Johansson, K.: Control of multi-agent systems via event-
based communication. In: 18th IFAC World Congress. (2011) 10086–10091

[133] Mazo, M., Tabuada, P.: Decentralized event-triggered control over wireless sensor/actuator
networks. Automatic Control, IEEE Transactions on 56(10) (2011) 2456 –2461

[134] Garcia, E., Antsaklis, P.: Adaptive stabilization of model-based networked control systems.
In: American Control Conference (ACC), 2011. (2011) 1094 –1099

[135] Lehmann, D.: Event-based state-feedback control. PhD thesis, Ruhr-Universitat Bochum
(2011)

[136] Velasco, M., Fuertes, J.M., Marti, P.: The self triggered task model for real-time control
systems. In: 24th IEEE Real-Time Systems Symposium (work in progress). (2003) 67–70

[137] Jr., M.M., Anta, A., Tabuada, P.: An iss self-triggered implementation of linear controllers.
Automatica 46(8) (2010) 1310 – 1314

[138] Anta, A., Tabuada, P.: To sample or not to sample: Self-triggered control for nonlinear
systems. Automatic Control, IEEE Transactions on 55(9) (2010) 2030 –2042

[139] Wang, X., Lemmon, M.: Self-triggered feedback control systems with finite-gain l2 stability.
Automatic Control, IEEE Transactions on 54(3) (2009) 452 –467

[140] Brockett, W.: Minimum attention control. In: Decision and Control, 1997., Proceedings of
the 36th IEEE Conference on. Volume 3. (1997) 2628 –2632

212

225

[141] Anta, A., Tabuada, P.: On the minimum attention and anytime attention problems for nonlin-
ear systems. In: Decision and Control (CDC), 2010 49th IEEE Conference on. (2010) 3234
–3239

[142] Donkers, M., Tabuada, P., Heemels, W.: On the minimum attention control problem for linear
systems: A linear programming approach. In: Decision and Control and European Control
Conference (CDC-ECC), 2011 50th IEEE Conference on. (2011) 4717 –4722

[143] Fontanelli, D., Greco, L., Bicchi, A.: Anytime control algorithms for embedded real-time
systems. In: Proceedings of the 11th international workshop on Hybrid Systems: Computa-
tion and Control. HSCC ’08 (2008) 158–171

[144] Gupta, V.: On an anytime algorithm for control. In: Decision and Control, 2009 held jointly
with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th
IEEE Conference on. (2009) 6218 –6223

[145] Blind, R., Allgöwer, F.: Analysis of networked event-based control with a shared communi-
cation medium: Part i - pure aloha. In: Proc. 18th IFAC World Congress, Milan, Italy (2011)
10092–10097

[146] Blind, R., Allgöwer, F.: Analysis of networked event-based control with a shared commu-
nication medium: Part ii - slotted aloha. In: Proc. 18th IFAC World Congress, Milan, Italy
(2011) 8830–8835

[147] Ramesh, C., Sandberg, H., Bao, L., Johansson, K.: On the dual effect in state-based schedul-
ing of networked control systems. In: American Control Conference (ACC), 2011. (2011)
2216 –2221

[148] Lehmann, D., Lunze, J.: Extension and experimental evaluation of an event-based state-
feedback approach. Control Engineering Practice 19(2) (2011) 101 – 112

[149] Tiberi, U.: Analysis and Design of IEEE 802.15.4 Networked Control Systems. PhD thesis,
University of LAquila (2011)

[150] Irwin, G., Colandairaj, J., Scanlon, W.G.: An overview of wireless networks in control and
monitoring. In Huang, D.S., Li, K., Irwin, G., eds.: Computational Intelligence. Volume
4114 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2006) 1061–1072

[151] Gravagne, I.A., Davis, J.M., Dacunha, J.J., Marks, R.J.: Bandwidth reduction for controller
area networks using adaptive sampling. In: ICRA. IEEE International Conf. on. Volume 5.
(2004) 5250–5255

[152] Gabel, O., Litz, L.: Qos-adaptive control in ncs with variable delays and packet losses -
a heuristic approach. In: Decision and Control, 2004. CDC. 43rd IEEE Conference on.
Volume 2. (2004) 1586 – 1591

[153] Al-Hammouri, A., Branicky, M., Liberatore, V., Phillips, S.: Decentralized and dynamic
bandwidth allocation in networked control systems. In: IPDPS. (2006) 8

[154] Kawka, P., Alleyne, A.: Stability and feedback control of wireless networked systems. In:
American Control Conference. Proc. of. Volume 4. (2005) 2953–2959

213

226

[155] Colandairaj, J., Irwin, G., Scanlon, W.: Wireless networked control systems with qos-based
sampling. IET Control Theory Applications, 1(1) (2007) 430 –438

[156] Bao, L., Skoglund, M., Fischione, C., Johansson, K.: Rate allocation for quantized control
over noisy channels. In: WiOPT. (2009) 1–9

[157] Ploplys, N., Kawka, P., Alleyne, A.: Closed-loop control over wireless networks. Control
Systems, IEEE 24(3) (2004) 58 – 71

[158] Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5) (2003) 19–25

[159] Edwards, S., Lavagno, L., Lee, E., Sangiovanni-Vincentelli, A.: Design of embedded sys-
tems: formal models, validation, and synthesis. Proceedings of the IEEE 85(3) (1997) 366
–390

[160] Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development of embed-
ded software. Proceedings of the IEEE 91(1) (2003)

[161] et al, J.P.: Towards model-based integration of tools and techniques for embedded control
system design, verification, and implementation. In: Workshops and Symposia at MoDELS
2008, Springer LNCS 5421. (2008)

[162] Porter, J., Hemingway, G., Nine, H., VanBuskirk, C., Kottenstette, N., Karsai, G., Szti-
panovits, J.: The esmol language and tools for high-confidence distributed control systems
design. part 1: Language, framework, and analysis. In: Tech. Report ISIS-10-109, Vanderbilt
University,. (2010)

[163] AS-2 Embedded Computing Systems Committee: Architecture analysis and design language
(AADL). Technical Report AS5506, Society of Automotive Engineers (2004)

[164] Hudak J. and Feiler P.: Developing AADL models for control systems: A practitioner’s
guide. Technical Report CMU/SEI-2007-TR-014, CMU SEI (2007)

[165] Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Paserone, C., Sangiovanni-Vincentelli,
A.L.: Metropolis: an integrated electronic system design environment. IEEE Computer
36(4) (2003) 45–52

[166] Al-Hammouri, A.T.: A comprehensive co-simulation platform for cyber-physical systems.
Computer Communications (0) (2012) –

[167] Cervin, A., Ohlin, M., Henriksson, D.: Simulation of neworked control systems using true-
time. In: Proceedings of International Workshop on Networked Control Systems: Tolerant
to Faults, Nancy, France (2007)

[168] Nutaro, J., Kuruganti, P., Miller, L., Mullen, S., Shankar, M.: Integrated hybrid-simulation
of electric power and communications systems. In: Power Engineering Society General
Meeting, 2007. IEEE. (2007) 1 –8

[169] Branicky, M., Liberatore, V., Phillips, S.: Networked control system co-simulation for co-
design. In: American Control Conference, 2003. Proceedings of the 2003. Volume 4. (2003)
3341 – 3346

[170] McCanne, S., Floyd., S.: The network simulator ns-2. http://isi.edu/nsnam/ns/
(2004)

214

227

[171] Varga, A.: Omnet++ discrete event simulation system. http://www.omnetpp.org
(2004)

[172] Al-Hammouri, A., Branicky, M., Liberatore, V., Phillips, S.: Decentralized and dynamic
bandwidth allocation in networked control systems. In: Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International. (2006)

[173] MathWorks: Matlab, the language of technical computing. http://www.mathworks.
com (2008)

[174] Modelica: Modelica and modelica association. http://www.modelica.org (2000)

[175] Lee, E.A., Hylands, C., Janneck, J., Davis II, J., Liu, J., Liu, X., Neuendorffer, S., Stewart,
S.S.M., Vissers, K., Whitaker, P.: Overview of the ptolemy project. http://ptolemy.
eecs.berkeley.edu (2001)

[176] Reutersward, P., Akesson, J., Cervin, A., Arzen, K.E.: Truetime network-a network simula-
tion library for modelica. In: Proceedings of the International Modelica Conference. (2009)

[177] Baldwin, P., Kohli, S., Lee, E.A., Liu, X., Zhao, Y., Ee, C.C.T., Brooks, C.H., Krishnan,
N.V., Neuendorffer, S., Zhong, C., Zhou, R.: Visualsense: Visual modeling for wireless and
sensor network systems. Technical report, CiteSeerX - Scientific Literature Digital Library
and Search Engine [http://citeseerx.ist.psu.edu/oai2] (United States) (2005)

[178] Kohtamaki, T., Pohjola, M., Brand, J., Eriksson, L.: Piccsim toolchain - design, simulation,
and automatic implementation of wireless networked control systems. In: IEEE Conference
on Networking, Sensing, and Control. (2009) 49–54

[179] Hatnik, U., Altmann, S.: Using modelsim, matlab/simulink and ns for simulation of dis-
tributed systems. International Conference on Parallel Computing in Electrical Engineering
0 (2004) 114–119

[180] Heimlich, O., Sailer, R., Budzisz, L.: Nmlab: A co-simulation framework for matlab and ns-
2. In: 2010 Second International Conference on Advances in System Simulation (SIMUL).
(2010) 152 –157

[181] Hasan, M., Yu, H., Carrington, A., Yang, T.: Co-simulation of wireless networked control
systems over mobile ad-hoc network using simulink and opnet. IET Comm. 3(8) (2009) 1297
–1310

[182] Branicky, A.A.H.M., Liberatore, V.: Co-simulation tools for networked control systems.
Hybrid Systems Computation and Control, Lecture Notes in Computer Science 4981 (2008)
16–29

[183] Dahmann, J.S.: The high level architecture and beyond: technology challenges. In: Pro-
ceedings of the thirteenth workshop on Parallel and distributed simulation, Washington, DC,
USA, IEEE Computer Society (1999) 64–70

[184] Kuhl, F., Dahmann, J., Weatherly, R.: Creating Computer Simulation Systems: An Introduc-
tion to the High Level Architecture. Prentice Hall PTR (1999)

[185] Neema, S., Bapty, T., Koutsoukos, X., Neema, H., Sztipanovits, J., Karsai, G.: Model based
integration and experimentation of information fusion and c2 systems. In: The 12th Interna-
tional Conference on Information Fusion. (2009)

215

228

[186] Hemingway, G., Neema, H., Nine, H., Sztipanovits, J., Karsai, G.: Rapid synthesis of high-
level architecture-based heterogeneous simulation: A model-based integration approach. In:
Transactions of the Society for Modeling and Simulation International (SIMULATION).
(2011)

[187] Karsai, G., Ledeczi, A., Neema, S., Sztipanovits, J.: The model-integrated computing tool-
suite: Metaprogrammable tools for embedded control system design. In: IEEE Joint Confer-
ence CCA, ISIC and CACSD. (2006)

[188] Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Claus, C., Elmqvist, H., Junghanns, A.,
Mauss, J., Monteiro, M., Neidhold, T., Neumerkel, D., Olsson, H., Peetz, J.V., Wolf, S.:
The functional mockup interface for tool independent exchange of simulation models. In:
Proceedings of the 8th International Modelica Conference. (2011)

[189] Laprie, J.C.: Dependable computing and fault tolerance : Concepts and terminology. In:
Fault-Tolerant Computing, 1995, ’ Highlights from Twenty-Five Years’., Twenty-Fifth Inter-
national Symposium on. (1995) 2–10

[190] Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. Dependable and Secure Computing, IEEE Transactions
on 1(1) (2004) 11 – 33

[191] Caccavale, F., Villani, L.: Fault Diagnosis and Fault Tolerance for Mechatronic Systems.
Springer (2003)

[192] Huo, Z., Fang, H., Yan, G.: Co-design for ncs robust fault-tolerant control. In: Industrial
Technology, 2005. ICIT 2005. IEEE International Conference on. (2005) 119 –124

[193] Patton, R., Frank, P.: Issues of Fault Diagnosis for Dynamic Systems. Springer (2000)

[194] Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems.
Annual Reviews in Control 32(2) (2008) 229 – 252

[195] Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control.
Springer-Verlag (2006)

[196] Isermann, R.: Fault-tolerant systems a short introduction. In: Fault-Diagnosis Applications.
Springer Berlin Heidelberg (2011) 285–289

[197] Seto, D., Krogh, B., Sha, L., Chutinan, A.: Dynamic control system upgrade using the
simplex architecture. Control Systems, IEEE 18(4) (1998) 72 –80

[198] Bodson, M., Lehoczky, J., Rajkumar, R., Sha, L., Stephan, J.: Analytic redundancy for soft-
ware fault-tolerance in hard real-time systems. In Koob, G.M., Lau, C.G., eds.: Foundations
of Dependable Computing. Volume 284 of The Kluwer International Series in Engineering
and Computer Science. Springer US (1994) 183–212

[199] Ding, S.: Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools.
Springer (2008)

[200] Sobhani-Tehrani, E., Khorasani, K.: Fault Diagnosis of Nonlinear Systems Using a Hybrid
Approach. Springer Berlin/Heidelberg (2009)

216

229

[201] Patton, R.: Fault detection and diagnosis in aerospace systems using analytical redundancy.
Computing Control Engineering Journal 2(3) (1991) 127 –136

[202] Sha, L., Rajkumar, R., Gagliardi, M.: Evolving dependable real-time systems. In: Aerospace
Applications Conference, 1996. Proceedings., 1996 IEEE. Volume 1. (1996) 335 –346 vol.1

[203] Sha, L.: Dependable system upgrade. In: Real-Time Systems Symposium, 1998. Proceed-
ings., The 19th IEEE. (1998) 440–448

[204] Sha, L.: Using simplicity to control complexity. Software, IEEE 18(4) (2001) 20–28

[205] Bak, S., Chivukula, D., Adekunle, O., Sun, M., Caccamo, M., Sha, L.: The system-level
simplex architecture for improved real-time embedded system safety. In: Real-Time and
Embedded Technology and Applications Symposium, 2009. RTAS 2009. 15th IEEE. (2009)
99 –107

[206] Avizienis, A.: The n-version approach to fault-tolerant software. Software Engineering,
IEEE Transactions on SE-11(12) (1985) 1491 – 1501

[207] Brilliant, S., Knight, J., Leveson, N.: Analysis of faults in an n-version software experiment.
Software Engineering, IEEE Transactions on 16(2) (1990) 238 –247

[208] Randell, B., Xu, J.: The evolution of the recovery block concept. In: IN SOFTWARE FAULT
TOLERANCE, John Wiley and Sons Ltd (1994) 1–22

[209] Hwang, I., Kim, S., Kim, Y., Seah, C.: A survey of fault detection, isolation, and reconfigu-
ration methods. Control Systems Technology, IEEE Transactions on 18(3) (2010) 636–653

[210] Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault
detection and diagnosis: Part i: Quantitative model-based methods. Computers and Chemical
Engineering 27(3) (2003) 293 – 311

[211] Frank, P.: Analytical and qualitative model-based fault diagnosis a survey and some new
results. European Journal of Control 2(1) (1996) 6 – 28

[212] Patton, R., Chen, J.: Observer-based fault detection and isolation: Robustness and applica-
tions. Control Engineering Practice 5(5) (1997) 671 – 682

[213] Frank, P.M.: On-line fault detection in uncertain nonlinear systems using diagnostic ob-
servers: a survey. International journal of systems science 25(12) (1994) 2129–2154

[214] Chow, E., Willsky, A.: Analytical redundancy and the design of robust failure detection
systems. Automatic Control, IEEE Transactions on 29(7) (1984) 603–614

[215] Gertler, J.J., Fang, X.W., Luo, Q.: Detection and diagnosis of plant failures; the or-
thogonal parity equation approach. In Leondes, C., ed.: Control & Dynamics Systems.
Vol.37,Academic Press (1990) 157–216

[216] Gertler, J., Singer, D.: A new structural framework for parity equation-based failure detection
and isolation. Automatica 26(2) (1990) 381 – 388

[217] Gertler, J.J., Kunwer, M.M.: Optimal residual decoupling for robust fault diagnosis. Interna-
tional Journal of Control 61(2) (1995) 395–421

217

230

[218] Ding, S.X.: Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and
Tools. 1st edn. Springer Publishing Company, Incorporated (2008)

[219] Isermann, R.: Process fault detection based on modeling and estimation methodsa survey.
Automatica 20(4) (1984) 387 – 404

[220] Basseville, M., Nikiforov, I.V.: Detection of abrupt changes: Theory and application (1993)

[221] Fantuzzi, C., Secchi, C.: Energetic approach to parametric fault detection and isolation.
In: American Control Conference, 2004. Proceedings of the 2004. Volume 6., IEEE (2004)
5034–5039

[222] Chen, W., Ding, S., Khan, A.Q., Abid, M.: Energy based fault detection for dissipative
systems. In: Control and Fault-Tolerant Systems (SysTol), 2010 Conference on. (2010) 517–
521

[223] Theilliol, D., Noura, H., Sauter, D., Hamelin, F.: Sensor fault diagnosis based on energy
balance evaluation: Application to a metal processing. ISA transactions 45(4) (2006) 603–
610

[224] Yang, H., Cocquempot, V., Jiang, B.: Fault tolerance analysis for switched systems via global
passivity. Circuits and Systems II: Express Briefs, IEEE Transactions on 55(12) (2008) 1279–
1283

[225] Cardenas, A., Amin, S., Sastry, S.: Secure control: Towards survivable cyber-physical sys-
tems. In: Distributed Computing Systems Workshops, 2008. ICDCS ’08. 28th International
Conference on. (2008) 495–500

[226] Cárdenas, A.A., Amin, S., Sastry, S.: Research challenges for the security of control systems.
In: Proceedings of the 3rd conference on Hot topics in security. HOTSEC’08, Berkeley, CA,
USA, USENIX Association (2008) 6:1–6:6

[227] Huang, Y.L., Cárdenas, A.A., Amin, S., Lin, Z.S., Tsai, H.Y., Sastry, S.: Understanding the
physical and economic consequences of attacks on control systems. International Journal of
Critical Infrastructure Protection 2(3) (2009) 73–83

[228] Teixeira, A., Pérez, D., Sandberg, H., Johansson, K.H.: Attack models and scenarios for
networked control systems. In: Proceedings of the 1st international conference on High
Confidence Networked Systems. HiCoNS ’12, New York, NY, USA, ACM (2012) 55–64

[229] Gupta, A., Langbort, C., Basar, T.: Optimal control in the presence of an intelligent jammer
with limited actions. In: Decision and Control (CDC), 2010 49th IEEE Conference on.
(2010) 1096–1101

[230] Amin, S., Cárdenas, A.A., Sastry, S.S.: Safe and secure networked control systems under
denial-of-service attacks. In: Proceedings of the 12th International Conference on Hybrid
Systems: Computation and Control. HSCC ’09, Springer-Verlag (2009) 31–45

[231] Long, M., Wu, C.H., Hung, J.Y.: Denial of service attacks on network-based control systems:
Impact and mitigation. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1(2)
(2005) 85

218

231

[232] Mo, Y., Sinopoli, B.: False data injection attacks in control systems. In: 1st Workshop on
Secure Control Systemss, Stockholm, Sweden (2010)

[233] Mo, Y., Sinopoli, B.: Secure control against replay attacks. In: Communication, Control,
and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on, IEEE (2009)
911–918

[234] Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estimation in electric
power grids. ACM Transactions on Information and System Security (TISSEC) 14(1) (2011)
13

[235] Esfahani, P., Vrakopoulou, M., Margellos, K., Lygeros, J., Andersson, G.: A robust policy
for automatic generation control cyber attack in two area power network. In: Decision and
Control (CDC), 2010 49th IEEE Conference on. (2010) 5973–5978

[236] Smith, R.: A decoupled feedback structure for covertly appropriating networked control
systems. In: Proc. 18th IFAC World Congress, Milan, Italy (2011) 90–95

[237] Pasqualetti, F., Dorfler, F., Bullo, F.: Cyber-physical attacks in power networks: Models,
fundamental limitations and monitor design. In: Decision and Control and European Control
Conference (CDC-ECC), 2011 50th IEEE Conference on, IEEE (2011) 2195–2201

[238] Pasqualetti, F., Bicchi, A., Bullo, F.: Consensus computation in unreliable networks: A
system theoretic approach. Automatic Control, IEEE Transactions on 57(1) (2012) 90–104

[239] Sundaram, S., Hadjicostis, C.: Distributed function calculation via linear iterative strategies
in the presence of malicious agents. Automatic Control, IEEE Transactions on 56(7) (2011)
1495–1508

[240] LeBlanc, H.J., Zhang, H., Koutsoukos, X., Sundaram, S.: Resilient asymptotic consensus in
robust networks. Selected Areas in Communications, IEEE Journal on 31(4) (2013) 766–781

[241] Fawzi, H., Tabuada, P., Diggavi, S.: Security for control systems under sensor and actuator
attacks. In: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. (2012)
3412–3417

[242] Gupta, R.A., Chow, M.Y.: Performance assessment and compensation for secure networked
control systems. In: Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of
IEEE, IEEE (2008) 2929–2934

[243] Zeng, W., Chow, M.Y.: Optimal tradeoff between performance and security in networked
control systems based on coevolutionary algorithms. Industrial Electronics, IEEE Transac-
tions on 59(7) (2012) 3016–3025

[244] Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. John Wiley
and Sons Inc., New York, USA (2006)

[245] Aguinaga-Ruiz, E., Zavala-Rio, A., Santibanez, V., Reyes, F.: Global trajectory tracking
through static feedback for robot manipulators with bounded inputs. Control Systems Tech-
nology, IEEE Transactions on 17(4) (2009) 934 –944

[246] Craig, J.J., Hsu, P., Sastry, S.S.: Adaptive control of mechanical manipulators. The Interna-
tional Journal of Robotics Research 6(2) (1987) 16–28

219

232

[247] H.G. Sage, M.D.M., Ostertag, E.: Robust control of robot manipulators: A survey. Interna-
tional Journal of Control 72(16) (1999) 1498–1522

[248] Abdallah, C., Dawson, D., Dorato, P., Jamshidi, M.: Survey of robust control for rigid robots.
Control Systems, IEEE 11(2) (1991) 24 –30

[249] Er, M.J., Gao, Y.: Robust adaptive control of robot manipulators using generalized fuzzy
neural networks. Industrial Electronics, IEEE Transactions on 50(3) (2003) 620 – 628

[250] Subudhi, B., Morris, A.: Soft computing methods applied to the control of a flexible robot
manipulator. Applied Soft Computing 9(1) (2009) 149 – 158

[251] Campion, G., Bastin, G., Dandrea-Novel, B.: Structural properties and classification of
kinematic and dynamic models of wheeled mobile robots. Robotics and Automation, IEEE
Transactions on 12(1) (1996) 47 –62

[252] Siciliano, Brunoand Khatib, O.: Springer Handbook of Robotics. Springer (2008)

[253] Samson, C., Ait-Abderrahim, K.: Feedback control of a nonholonomic wheeled cart in
cartesian space. In: Robotics and Automation, 1991. Proceedings., 1991 IEEE International
Conference on. (1991) 1136 –1141

[254] d’Andrea Novel, B., Bastin, G., Campion, G.: Dynamic feedback linearization of nonholo-
nomic wheeled mobile robots. In: Robotics and Automation, 1992. Proceedings., 1992 IEEE
International Conference on. (1992) 2527 –2532

[255] Jiang, Z.P., Nijmeijer, H.: A recursive technique for tracking control of nonholonomic sys-
tems in chained form. Automatic Control, IEEE Transactions on 44(2) (1999) 265 –279

[256] Samson, C.: Control of chained systems application to path following and time-varying
point-stabilization of mobile robots. Automatic Control, IEEE Transactions on 40(1) (1995)
64 –77

[257] Aicardi, M., Casalino, G., Bicchi, A., Balestrino, A.: Closed loop steering of unicycle like
vehicles via lyapunov techniques. Robotics Automation Magazine, IEEE 2(1) (1995) 27 –35

[258] deWit, C., Sordalen, O.: Exponential stabilization of mobile robots with nonholonomic
constraints. Automatic Control, IEEE Transactions on 37(11) (1992) 1791 –1797

[259] M’Closkey, R., Murray, R.: Exponential stabilization of driftless nonlinear control systems
using homogeneous feedback. Automatic Control, IEEE Transactions on 42(5) (1997) 614
–628

[260] Gregor, K., Igor, k.: Tracking-error model-based predictive control for mobile robots in real
time. Robotics and Autonomous Systems 55(6) (2007) 460 – 469

[261] Blazic, S.: A novel trajectory-tracking control law for wheeled mobile robots. Robotics and
Autonomous Systems 59(11) (2011) 1001 – 1007

[262] Wai, R.J., Liu, C.M.: Design of dynamic petri recurrent fuzzy neural network and its appli-
cation to path-tracking control of nonholonomic mobile robot. Industrial Electronics, IEEE
Transactions on 56(7) (2009) 2667 –2683

220

233

[263] Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: A taxonomy for swarm robots. In: Intel-
ligent Robots and Systems ’93, IROS ’93. Proceedings of the 1993 IEEE/RSJ International
Conference on. Volume 1. (1993) 441 –447

[264] Sahin, E.: Swarm robotics: From sources of inspiration to domains of application. In Sahin,
E., Spears, W., eds.: Swarm Robotics. Volume 3342 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg (2005) 10–20

[265] Mossinger, J.: An insight into the hardware and software complexity of ecus in vehicles.
Advances in Computing and Information Technology, Communications in Computer and
Information Science 198 (2011) 99–106

[266] Mossinger, J.: Software in automotive systems. IEEE Software 27(2) (2010) 92 –94

[267] Michailidis, A., Spieth, U., Ringler, T., Hedenetz, B., Kowalewski, S.: Test front loading in
early stages of automotive software development based on autosar. In: Design, Automation
Test in Europe Conference Exhibition (DATE). (2010) 435 –440

[268] Sangiovanni-Vincentelli, A.: Electronic-system design in the automobile industry. Micro,
IEEE 23(3) (2003) 8 – 18

[269] Cook, J., Kolmanovsky, I., McNamara, D., Nelson, E., Prasad, K.: Control, computing and
communications: Technologies for the twenty-first century model t. Proceedings of the IEEE
95(2) (2007) 334 –355

[270] Sangiovanni-Vincentelli, A., Di Natale, M.: Embedded system design for automotive appli-
cations. Computer 40(10) (2007) 42 –51

[271] Siciliano, B., Khatib, O.: Fundamentals of Vehicle Dynamics. Society of Automotive Engi-
neers Inc (1992)

[272] Rajamani, R.: Vehicle Dynamics and Control. Springer (2005)

[273] Broy, M., Chakraborty, S., Goswami, D., Ramesh, S., Satpathy, M., Resmerita, S., Pree, W.:
Cross-layer analysis, testing and verification of automotive control software. In: Proc. of the
9th ACM Intl. Conf. on Embedded software(EMSOFT). (2011) 263–272

[274] Zander, J., Schieferdecker, I., Mosterman, P.J.: Model-Based Testing for Embedded Systems:
Model-Based Testing in Embedded Automotive System. CRC Press (2011)

[275] Drolia, U., Wang, Z., Pant, Y., Mangharam, R.: Autoplug: An automotive test-bed for
electronic controller unit testing and verification. In: Intelligent Transportation Systems
(ITSC), 2011 14th International IEEE Conference on. (2011) 1187 –1192

[276] Hu, W.W., Wang, M.L., Lin, Y.H.: On the software-based development and verification
of automotive control systems. In: 33rd Annual Conf. of the IEEE Industrial Electronics
Society. (2007) 857 –862

[277] Ray, A., Morschhaeuser, I., Ackermann, C., Cleaveland, R., Shelton, C., Martin, C.: Val-
idating automotive control software using instrumentation-based verification. In: 24th
IEEE/ACM Intl. Conference on Automated Software Engineering. (2009) 15 –25

[278] Navet, N., Song, Y., Simonot-Lion, F., Wilwert, C.: Trends in automotive communication
systems. Proceedings of the IEEE 93(6) (2005) 1204 –1223

221

234

[279] Desoer, C., Vidyasagar, M.: Feedback Systems: Input-Output Properties. Academic Press,
Inc. (1975)

[280] Khalil, H.: Nonlinear Systems. Prentice-Hall, Inc., Upper Saddle River, NJ (2002)

[281] Guilemin, E.A.: Synthesis of Passive Networks. Wiley New York, Inc. (1957)

[282] Willems, J.C.: Dissipative dynamical systems part i: General theory. Archive for Rational
Mechanics and Analysis 45 (1972) 321–351

[283] Willems, J.C.: The Analysis of Feedback Systems. MIT Press, Cambridge, MA, USA (1971)

[284] Willems, J.C.: Dissipative dynamical systems part ii: Linear systems with quadratic
supply rates. Archive for Rational Mechanics and Analysis 45 (1972) 352–393
10.1007/BF00276494.

[285] Marquez, H.: Nonlinear Control Systems: Analysis and Design. Wiley-InterScience, Hobo-
ken, NJ (2003)

[286] Byrnes, C.I., Lin, W.: Losslessness, feedback equivalence, and the global stabilization of
discrete-time nonlinear systems. Automatic Control, IEEE Transactions on 39(1) (1994)
83–98

[287] Haddad, W.M., Chellaboina, V.: Nonlinear dynamical systems and control: a Lyapunov-
based approach. Princeton University Press (2011)

[288] Hill, D., Moylan, P.: The stability of nonlinear dissipative systems. Automatic Control, IEEE
Transactions on 21(5) (1976) 708–711

[289] Willems, J.C.: Dissipative dynamical systems part ii: Linear systems with quadratic supply
rates. Archive for Rational Mechanics and Analysis 45(5) (1972) 352–393

[290] Goodwin, G.C., Sin, K.S.: Adaptive filtering prediction and control. Courier Dover Publica-
tions (2013)

[291] Ortega, R., Van Der Schaft, A., Mareels, I., Maschke, B.: Putting energy back in control.
Control Systems, IEEE 21(2) (2001) 18–33

[292] Byrnes, C., Lin, W.: Losslessness, feedback equivalence, and the global stabilization of
discrete-time nonlinear systems. Automatic Control, IEEE Transactions on 39(1) (1994) 83
–98

[293] Byrnes, C., Isidori, A., Willems, J.: Passivity, feedback equivalence, and the global stabiliza-
tion of minimum phase nonlinear systems. IEEE Transactions on Automatic Control 36(11)
(1991/11/) 1228 – 40

[294] van der Schaft, A.: L2-Gain and Passivity in Nonlinear Control. Lecture Notes in Control
and Information Sciences. Springer-Verlag, Secaucus, NJ (2000)

[295] Bao, J., Lee, P.: Process Control: The Passive Systems Approach. Advances in Industrial
Control. Springer (2007)

[296] Kottenstette, N., Antsaklis, P.: Relationships between positive real, passive dissipative, amp;
positive systems. In: American Control Conference (ACC), 2010. (2010) 409 –416

222

235

[297] Brogliato, B., Lozano, R., Maschke, B., Egeland, O., et al.: Dissipative systems analysis and
control: theory and applications. (2007)

[298] Hitz, L., Anderson, B.D.O.: Discrete positive-real functions and their application to system
stability. Electrical Engineers, Proceedings of the Institution of 116(1) (1969) 153–155

[299] Popov, V.M.: Hyperstability of Control Systems. Springer-Verlag New York, Inc. (1973)

[300] Sepulchre, R., Jankovic, M., Kokotovic, P.: Constructive Nonlinear Control. Springer-Verlag
(1997)

[301] Wen, J.T.: Robustness analysis based on passivity. In: American Control Conference. (1988)
1207–1213

[302] Bao, J., Chan, K.H., Zhang, W.Z., Lee, P.L.: An experimental pairing method for multi-loop
control based on passivity. Journal of Process Control 17(10) (2007) 787 – 798

[303] Byrnes, C., Isidori, A., Willems, J.: Passivity, feedback equivalence, and the global stabiliza-
tion of minimum phase nonlinear systems. Automatic Control, IEEE Transactions on 36(11)
(1991) 1228–1240

[304] Jiang, Z.P., Hill, D.J., Fradkov, A.L.: A passification approach to adaptive nonlinear stabi-
lization. Systems and Control Letters 28(2) (1996) 73 – 84

[305] Jadbabaie, A., Abdallah, C.T.: (Simultaneous passification and stabilization of a class of
nonlinear minimum phase systems via static output feedback)

[306] Kelkar, A., Joshi, S.: Robust passification and control of non-passive systems. In: American
Control Conference, 1998. Proceedings of the 1998. Volume 5. (1998) 3133–3137

[307] Kelkar, A., Joshi, S.: Robust control of non-passive systems via passification. American
Control Conference 5 (1997) 2657–2661

[308] Niemeyer, G., Slotine, J.J.E.: Telemanipulation with time delays. Int. J. of Robotics Research
23(9) (2004) 873 – 890

[309] Kottenstette, N., Hall, J., Koutsoukos, X., Antsaklis, P., Sztipanovits, J.: Digital control
of multiple discrete passive plants over networks. Intl. Journal of Systems, Control and
Communications, Special Issue on Progress in Networked Control Systems (2009)

[310] Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The generic modeling environment. Wkshp. on Intelligent Signal
Processing (2001)

[311] Craig, J.J.: Introduction to Robotics: Mechanics and Control. Addison-Wesley (1989)

[312] Grant, M., Boyd, S.: Cvx: Matlab software for disciplined convex programming.
http://stanford.edu/ boyd/cvx (2009)

[313] Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. Recent
Advances in Learning and Control (a tribute to M. Vidyasagar), Springer Lecture Notes in
Control and Information Sciences (2008) 95–110

223

236

[314] Crustcrawler.com: Dynamixel AX-12 Manual. (2009)
http://www.crustcrawler.com/products/bioloid/docs/AX-12.pdf.

[315] SIRSLab: Haptik Library Overview. (2009) http://sirslab.dii.unisi.it/haptiklibrary/overview.htm.

[316] Astrom, K.J., Wittenmark, B.: Computer Controlled Systems: Theory and Design. Prentice-
Hall (1990)

[317] Dorf, R., Farren, M., Phillips, C.: Adaptive sampling frequency for sampled-data control
systems. IRE Trans. on Aut. Control, 7(1) (1962) 38 – 47

[318] Velasco, M., Fuertes, J.M., Marti, P.: The self triggered task model for real-time control
systems. In: 24th IEEE Real-Time Systems Symposium (work in progress). (2003) 67–70

[319] Mazo, M., Tabuada, P.: Input-to-state stability of self-triggered control systems. In: 48th
IEEE Conf. on Decision and Control. (2009) 928 –933

[320] Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ
(1991)

[321] Kottenstette, N., Antsaklis, P.: Stable digital control networks for continuous passive plants
subject to delays and data dropouts. 46th IEEE Conf. on Decision and Control (2007) 4433–
4440

[322] MathWorks, I.T.: Real-time windows target-simulink. The Language of Technical Comput-
ing (2013)

[323] Naranjo, J.A.H., Chavarro, A.C., De Keyser, R.: A matlab R⃝ approach for implementing
control algorithms in real-time: Rtwt. (2011)

[324] Zeigler, B.P., Praehofer, H., Kim, T.G., et al.: Theory of modeling and simulation. Volume 19.
John Wiley New York (1976)

[325] Cervin, A., Ohlin, M., Henriksson, D.: Simulation of networked control systems using true-
time. In Proceedings 3rd International Workshop on Networked Control Systems: Tolerant
to Faults (2007)

[326] Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development of embed-
ded software. Proceedings of the IEEE 91(1) (2003) 145–164

[327] Neema, S., Bapty, T., Koutsoukos, X., Neema, H., Sztipanovits, J., Karsai, G.: Model based
integration and experimentation of information fusion and c2 systems. In: 12th International
Conference on Information Fusion. (2009)

[328] Neema, H., Nine, H., Hemingway, G., Sztipanovits, J., Karsai, G.: Rapid synthesis of multi-
model simulations for computational experiments in c2. In: Armed Forces Communications
and Electronics Association - George Mason University Symposium. (2009)

[329] Zegura, E.W.: GT-ITM: Georgia Tech Internetwork Topology models (software).
http://www.cc.gatech.edu/project (1996)

[330] Portico: The portio project. http://www.porticoproject.org (2010)

224

237

[331] Riley, D., Eyisi, E., Bai, J., Xue, Y., Koutsoukos, X., Sztipanovits, J.: Networked control
system wind tunnel (ncswt)- an evaluation tool for networked multi-agent systems. In: 4th
Int. ICST Conf. on Simulation Tools and Techniques (SIMUTools). (2011)

[332] Leon-Garcia, A.: Probability and Random Processes for Electrical Engineering. Addison-
Wesley (1993)

[333] Falliere, N., Murchu, L., (Symantec), E.C.: W32.stuxnet dossier. (2011)

[334] Journal, T.W.S.: Electricity grid in u.s. penetrated by spies. A1 (2009)

[335] Li, C., Raghunathan, A., Jha, N.: Hijacking an insulin pump: Security attacks and defenses
for a diabetes therapy system. In: 2011 13th IEEE International Conference In e-Health
Networking Applications and Services (Healthcom),. (2011) 150 –156

[336] Abrams, M., Weiss, J.: Malicious control system cyber security attack case study maroochy
water services. (2008)

[337] : (nerc), n. a. e. r. c. jan-june 2009 disturbance index. (2009)

225

238

